A Pacemaker for Your Brain

TAU's brain-to-computer chip revolutionizes neurological therapy

By stimulating certain areas of the brain, scientists can alleviate the effects of disorders such as depression or Parkinson's disease. That's the good news. But because controlling that stimulation currently lacks precision, over-stimulation is a serious concern — losing some of its therapeutic benefits for the patient over time.

Now a Tel Aviv University team, part of a European consortium, is delving deep into human behavior, neurophysiology and engineering to create a chip that can help doctors wire computer applications and sensors to the brain. The chip will provide deep brain stimulation precisely where and when it's needed.

Prof. Matti Mintz of Tel Aviv University's Psychobiology Research Unit in its Department of Psychology is focusing on the behavioral-physiological aspects of the research. He and the rest of the international research team are working toward a chip that could help treat some diseases of the mind in just a few years. The platform, says Prof. Mintz, is flexible enough to provide a basis for a variety of clinical experiments, and tools which can be programmed for specific disorders. For example, the chip could restore lost functions of the brain after a traumatic brain injury from a car accident or stroke.

Reversing strokes, depression and aging

Prof. Matti Mintz, Tel Aviv University
Prof. Matti Mintz

The team's methodology is straightforward — they record activity using electrodes implanted in diseased areas of the brain. Based on an analysis of this activity, they develop algorithms to simulate healthy neuronal activity which are programmed into a microchip and fed back into the brain.

For now, the chip, called the Rehabilitation Nano Chip (or ReNaChip), is hooked up to tiny electrodes which are implanted in the brain. But as chips become smaller, the ReNaChip could be made small enough to be "etched" right onto the electrodes themselves.

For therapeutic purposes, though, only the electrodes will be inserted into the brain. "The chip itself can be implanted just under the skin, like pacemakers for the heart," says Prof. Mintz, who is currently conducting experiments on animal models, "ensuring that the brain is stimulated only when it needs to be."

One of the challenges of the proposed technology is the size of the electrodes. The researchers hope to further miniaturize deep brain electrodes while adding more sensors at the same time says Prof. Mintz. His Tel Aviv University colleague and partner Prof. Yossi Shaham-Diamond is working on this problem.

The international multidisciplinary team, includes other researchers from TAU — Prof. Hagit Messer-Yaron and Dr. Mira Kalish — and partners from Austria, England and Spain, regularly converge on the TAU campus to update and integrate new components of the set-up and monitor the progress of the chip in live animals in Prof. Mintz's lab.

A two-way conversation

The idea that a chip can interface between inputs and outputs of certain brain area is a very new concept in scientific circles, Prof. Mintz notes, although movies and TV shows about bionic humans have been part of the popular culture for decades. The researchers say that their ReNaChip could help people whose brains have deteriorated with age or been damaged by injury and disease. The chip will not only provide a bionic replacement for lost neuronal function in the brain, under ideal conditions, it could significantly rehabilitate the brain.

Currently, the researchers are attempting to rehabilitate motor-learning functions lost due to brain damage. "We are attaching the chip to the brain to stimulate relatively simple brain behaviors," says Prof. Mintz. A controlled treatment for drug resistant epilepsy, based on the team's technology, could be only a few years away, he says.


Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

 

 

All active news articles
 

Quick links

Other recent news

  • On the Defensive
  • Making Sense of Our Senses
  • Revive Your Smartphone in 30 Seconds
  • Is Stress a Perk?
  • TAU and Northwestern University Become "Sister Universities"
  • Drawing Conclusions
  • In Memoriam: Avraham Yaski, Founding Father of Israeli Architecture
  • Award-winning Producer Steve Tisch Will Chair Tel Aviv International Student Film Festival at TAU
  • Corporate Layoff Strategies Are Increasing Workplace Gender and Racial Inequality
  • The Knesset Comes Calling
  • Not Just What You Eat
  • Conquering Computer Armies
  • Restoring Order in the Brain
  • Listening to Whispers at the Water Cooler
  • TAU's Prof. Israel Finkelstein Receives Prestigious Delalande-Guérineau Prize
  • Off with Your Glasses
  • Pulitzer Prize Historian Saul Friedlander and MIT Visionary Marvin Minsky Among 2014 Dan David Prize Winners
  • TAU Scientists Honored for Cutting-Edge Proposals in Melanoma Research
  • New Study Finds the Early Universe "Warmed Up" Later than Previously Believed
  • Finding Israel's First Camels
  •