Register for updates

 
 

Medicine & Health
RSS Feed
A Heartbeat Away? Hybrid "Patch" Could Replace Transplants
Tuesday, September 30, 2014 9:30:00 AM

TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch

Because heart cells cannot multiply and cardiac muscles contain few stem cells, heart tissue is unable to repair itself after a heart attack. Now Tel Aviv University researchers are literally setting a new gold standard in cardiac tissue engineering.

Dr. Tal Dvir and his graduate student Michal Shevach of TAU's Department of Biotechnology, Department of Materials Science and Engineering, and Center for Nanoscience and Nanotechnology, have been developing sophisticated micro- and nanotechnological tools — ranging in size from one millionth to one billionth of a meter — to develop functional substitutes for damaged heart tissues. Searching for innovative methods to restore heart function, especially cardiac "patches" that could be transplanted into the body to replace damaged heart tissue, Dr. Dvir literally struck gold. He and his team discovered that gold particles are able to increase the conductivity of biomaterials.

In a study published by Nano Letters, Dr. Dvir's team presented their model for a superior hybrid cardiac patch, which incorporates biomaterial harvested from patients and gold nanoparticles. "Our goal was twofold," said Dr. Dvir. "To engineer tissue that would not trigger an immune response in the patient, and to fabricate a functional patch not beset by signalling or conductivity problems."

A scaffold for heart cells

Cardiac tissue is engineered by allowing cells, taken from the patient or other sources, to grow on a three-dimensional scaffold, similar to the collagen grid that naturally supports the cells in the heart. Over time, the cells come together to form a tissue that generates its own electrical impulses and expands and contracts spontaneously. The tissue can then be surgically implanted as a patch to replace damaged tissue and improve heart function in patients.

According to Dr. Dvir, recent efforts in the scientific world focus on the use of scaffolds from pig hearts to supply the collagen grid, called the extracellular matrix, with the goal of implanting them in human patients. However, due to residual remnants of antigens such as sugar or other molecules, the human patients' immune cells are likely to attack the animal matrix.

In order to address this immunogenic response, Dr. Dvir's group suggested a new approach. Fatty tissue from a patient's own stomach could be easily and quickly harvested, its cells efficiently removed, and the remaining matrix preserved. This scaffold does not provoke an immune response.

Using gold to create a cardiac network

The second dilemma, to establish functional network signals, was complicated by the use of the human extracellular matrix. "Engineered patches do not establish connections immediately," said Dr. Dvir. "Biomaterial harvested for a matrix tends to be insulating and thus disruptive to network signals."

At his Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Dvir explored the integration of gold nanoparticles into cardiac tissue to optimize electrical signaling between cells. "To address our electrical signalling problem, we deposited gold nanoparticles on the surface of our patient-harvested matrix, 'decorating' the biomaterial with conductors," said Dr. Dvir. "The result was that the nonimmunogenic hybrid patch contracted nicely due to the nanoparticles, transferring electrical signals much faster and more efficiently than non-modified scaffolds."

Preliminary test results of the hybrid patch in animals have been positive. "We now have to prove that these autologous hybrid cardiac patches improve heart function after heart attacks with minimal immune response," said Dr. Dvir. "Then we plan to move it to large animals and after that, to clinical trials."

Dr. Dvir has been awarded a fellowship from the American Heart Association, the Marie Curie Award for Young Investigators, the Alon Fellowship for Young Investigators from the Israeli Ministry of Education, and the Slezak Super Center Award for Cardiac Research.




Latest News

Global Internet of Things (IoT) Consortium Establishes Investment Vehicle at TAU

Ramot, TAU's Business Engagement Center Company, to launch i3 Equity Partners on campus.

Amarel Green Joins AFTAU as Director of Development, Silicon Valley

Corporate attorney brings more than a decade of experience with technology industry to new position.

Economics in a President Trump World

National teleconference with Prof. Leonardo Leiderman and Michael Shaoul.

"Nice" Women Earn Less than Their More Assertive Counterparts

New TAU study confirms that nice women finish last.

AFTAU Launches #TAUgives on November 29

"Giving Tuesday" initiative enables PhD students from Ram Fishman Lab to provide hands-on sustainability training to farmers in India, Ethiopia and Nepal.

President-Elect Trump and the Future of the Middle East

Dayan Center director Prof. Uzi Rabi discusses what the US election means for the region in a national teleconference.

Discovery of Neurotransmission Gene May Pave Way for Early Detection of Alzheimer's Disease

Identification could lead to new diagnostic blood test and therapeutics, say TAU researchers.

AFTAU to Celebrate Opening of The Steinhardt Museum of Natural History at Annual Gala Dinner

Philanthropist, financier and investor Michael Steinhardt to be honored; Charles Bronfman and Lynn Schusterman to serve as co-chairs.

Combined Virtual Reality–Treadmill Training May Prevent Falls Associated with Parkinson's and Other Disorders

Intervention can be used in gyms, rehabilitation centers and nursing homes, TAU researchers say.

Harnessing Algae for the Creation of Clean Energy

TAU researchers discover algae can yield mass quantities of hydrogen, the world's cleanest energy source.

Enzyme Treatment of Gene May Reverse Effects of Alzheimer's

APOE gene is a promising target for therapeutic approaches to Alzheimer's, says TAU researcher.

Prof. Illana Gozes Receives Top RARE Gene Award

World-renowned neuroscientist and geneticist celebrated for "commitment to research and new therapies."

Neural Membrane's Structural Instability May Trigger Multiple Sclerosis

TAU researchers discover physical mechanism that may enable immune system attack.

The Steve Tisch School of Film and Television at TAU Hosts First Annual Influencer Award

Homeland executive producer and TAU alum Gideon Raff honored at September 14th reception.

contentSecondary
c

© 2016 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10002 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University