Register for updates

 
 

Medicine & Health
RSS Feed
A Heartbeat Away? Hybrid "Patch" Could Replace Transplants
Tuesday, September 30, 2014 9:30:00 AM

TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch

Because heart cells cannot multiply and cardiac muscles contain few stem cells, heart tissue is unable to repair itself after a heart attack. Now Tel Aviv University researchers are literally setting a new gold standard in cardiac tissue engineering.

Dr. Tal Dvir and his graduate student Michal Shevach of TAU's Department of Biotechnology, Department of Materials Science and Engineering, and Center for Nanoscience and Nanotechnology, have been developing sophisticated micro- and nanotechnological tools — ranging in size from one millionth to one billionth of a meter — to develop functional substitutes for damaged heart tissues. Searching for innovative methods to restore heart function, especially cardiac "patches" that could be transplanted into the body to replace damaged heart tissue, Dr. Dvir literally struck gold. He and his team discovered that gold particles are able to increase the conductivity of biomaterials.

In a study published by Nano Letters, Dr. Dvir's team presented their model for a superior hybrid cardiac patch, which incorporates biomaterial harvested from patients and gold nanoparticles. "Our goal was twofold," said Dr. Dvir. "To engineer tissue that would not trigger an immune response in the patient, and to fabricate a functional patch not beset by signalling or conductivity problems."

A scaffold for heart cells

Cardiac tissue is engineered by allowing cells, taken from the patient or other sources, to grow on a three-dimensional scaffold, similar to the collagen grid that naturally supports the cells in the heart. Over time, the cells come together to form a tissue that generates its own electrical impulses and expands and contracts spontaneously. The tissue can then be surgically implanted as a patch to replace damaged tissue and improve heart function in patients.

According to Dr. Dvir, recent efforts in the scientific world focus on the use of scaffolds from pig hearts to supply the collagen grid, called the extracellular matrix, with the goal of implanting them in human patients. However, due to residual remnants of antigens such as sugar or other molecules, the human patients' immune cells are likely to attack the animal matrix.

In order to address this immunogenic response, Dr. Dvir's group suggested a new approach. Fatty tissue from a patient's own stomach could be easily and quickly harvested, its cells efficiently removed, and the remaining matrix preserved. This scaffold does not provoke an immune response.

Using gold to create a cardiac network

The second dilemma, to establish functional network signals, was complicated by the use of the human extracellular matrix. "Engineered patches do not establish connections immediately," said Dr. Dvir. "Biomaterial harvested for a matrix tends to be insulating and thus disruptive to network signals."

At his Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Dvir explored the integration of gold nanoparticles into cardiac tissue to optimize electrical signaling between cells. "To address our electrical signalling problem, we deposited gold nanoparticles on the surface of our patient-harvested matrix, 'decorating' the biomaterial with conductors," said Dr. Dvir. "The result was that the nonimmunogenic hybrid patch contracted nicely due to the nanoparticles, transferring electrical signals much faster and more efficiently than non-modified scaffolds."

Preliminary test results of the hybrid patch in animals have been positive. "We now have to prove that these autologous hybrid cardiac patches improve heart function after heart attacks with minimal immune response," said Dr. Dvir. "Then we plan to move it to large animals and after that, to clinical trials."

Dr. Dvir has been awarded a fellowship from the American Heart Association, the Marie Curie Award for Young Investigators, the Alon Fellowship for Young Investigators from the Israeli Ministry of Education, and the Slezak Super Center Award for Cardiac Research.




Latest News

TAU Research Opens the "Black Box" of Malignant Melanoma

Study pinpoints when melanoma cells metastasize to the brain months before they develop into fatal tumors.

Nanotech "Tattoo" Can Map Emotions and Monitor Muscle Activity

Novel skin electrode is comfortable and has endless commercial and medical applications, says TAU researcher.

Computerized Training Program from TAU Cuts Soldiers' Risk of PTSD

Training targets innocuous "threats" before combat to prevent post-traumatic stress disorder.

TAU Scientist Joins NASA for Historic Mission to Jupiter

Juno spacecraft will "revolutionize" our understanding of the formation of the universe.

Israel, US Sign Cyber Defense Deal at TAU Cyber Conference

Cyber defense cooperation enables two nations to compile and share sensitive cyber security information in "real time."

2016 TLV Film Festival Celebrates 30 Years of Cinematic Imagination

Tel Aviv International Student Film Festival draws heavyweights, rising stars from local and international film industries.

Chinese Officials and Academics Visit TAU to Explore Food Safety

TAU partners with Peking University and OSI Group to host weeklong conference on food safety issues and solutions.

Tel Aviv University Awards UN Chief Highest Honor

UN Secretary-General Ban Ki-moon receives George S. Wise Medal for peace efforts and condemnation of anti-Semitism.

TAU and NYU Establish New Partnership for International Academic Collaboration

New collaborative research program will promote joint activities in chemistry, physics, material science, and engineering.

TAU Innovation Conference Spotlights Student Ingenuity

Budding innovators showcase inventions at gathering attended by investors, entrepreneurs from around the world.

Steve Tisch School of Film and Television Inaugurated

Visionary Oscar®-winning producer Steve Tisch cuts ribbon in a festive ceremony.

IDEAS Los Angeles Announces Acclaimed Israeli Actress Ayelet Zurer as Closing Keynote Speaker

Second annual conference hosted by AFTAU will explore Zurer's perspective on how digital advances are changing the movie and television business.

TAU Awards Honorary Doctorate to Oscar®-Winning Producer Steve Tisch

Philanthropist and filmmaker honored for vision and global influence in cinematic arts and for significant investment in university.

contentSecondary
c

© 2016 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10002 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University