Register for updates

 
 

Medicine & Health
RSS Feed
How Rabies "Hijacks" Neurons to Attack the Brain
Monday, October 06, 2014 11:35:00 AM

Groundbreaking TAU study tracks precise path of deadly virus to the central nervous system

Rabies causes acute inflammation of the brain, producing psychosis and violent aggression. The virus, which paralyzes the body's internal organs, is always deadly for those unable to obtain vaccines in time. Some 55,000 people die from rabies every year.

For the first time, Tel Aviv University scientists have discovered the exact mechanism this killer virus uses to efficiently enter the central nervous system, where it erupts in a toxic explosion of symptoms. The study, published in PLOS Pathogens, was conducted by Dr. Eran Perlson and Shani Gluska of TAU's Sackler Faculty of Medicine and Sagol School of Neuroscience, in collaboration with the Friedrich Loeffler Institute in Germany.

"Rabies not only hijacks the nervous system’s machinery, it also manipulates that machinery to move faster," said Dr. Perlson. "We have shown that rabies enters a neuron in the peripheral nervous system by binding to a nerve growth factor receptor, responsible for the health of neurons, called p75. The difference is that its transport is very fast, even faster than that of its endogenous ligand, the small molecules that travel regularly along the neuron and keep the neuron healthy."

Faster than a speeding train

To track the rabies virus in the nervous system, the researchers grew mouse sensory neurons in an observation chamber and used live cell imaging to track the path taken by the virus particles. The researchers "saw" the virus hijack the "train" transporting cell components along a neuron and drove it straight into the spinal cord. Once in the spinal cord, the virus caught the first available train to the brain, where it wrought havoc before speeding through the rest of the body, shutting it down organ by organ.

Nerve cells, or neurons, outside the central nervous system are highly asymmetric. A long protrusion called an axon extends from the cell body to another nerve cell or organ along a specific transmission route. In addition to rapid transmission of electric impulses, axons also transport molecular materials over these distances.

"Axonal transport is a delicate and crucial process for neuronal survival, and when disrupted it can lead to neurodegenerative diseases," said Dr. Perlson. "Understanding how an organism such as rabies manipulates this machinery may help us in the future to either restore the process or even to manipulate it to our own therapeutic needs."

Hijacking the hijacker

"A tempting premise is to use this same machinery to introduce drugs or genes into the nervous system," Dr. Perlson added. By shedding light on how the virus hijacks the transport system in nerve cells to reach its target organ with maximal speed and efficiency, the researchers hope their findings will allow scientists to control the neuronal transport machinery to treat rabies and other neurodegenerative diseases.

Disruptions of the neuron train system also contribute to neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). According to Dr. Perlson, "An improved understanding of how the neuron train works could lead to new treatments for these disorders as well."




Latest News

Steve Tisch School of Film and Television Announces First Annual Influencer Award

Homeland Executive Producer and TAU Alum Gideon Raff to be honored at September 14th reception at Sony Pictures Studios.

TAU Research Reveals How Melanoma Spreads to Other Organs in the Body

Findings may lead to a cure for the deadly disease.

TAU Researcher Awarded 2016 MetLife Foundation Prize

Dr. Inna Slutsky receives illustrious award for outstanding research in the field of Alzheimer's disease.

Brain's Prefrontal Lobe Is Major Player in Parkinson's Gait

Cognitive functions play an active role in the gait pattern of Parkinson's patients, say TAU researchers.

Novel Technology May Prevent Burn Scars

Researchers at Tel Aviv and Harvard Universities develop method to control collagen-cell proliferation that produces scarring.

Flexible Building Blocks of the Future

New mechanical "metamaterial" developed at TAU may revolutionize prosthetics and wearable technologies.

TAU Research Opens the "Black Box" of Malignant Melanoma

Study pinpoints when melanoma cells metastasize to the brain months before they develop into fatal tumors.

Nanotech "Tattoo" Can Map Emotions and Monitor Muscle Activity

Novel skin electrode is comfortable and has endless commercial and medical applications, says TAU researcher.

Computerized Training Program from TAU Cuts Soldiers' Risk of PTSD

Training targets innocuous "threats" before combat to prevent post-traumatic stress disorder.

TAU Scientist Joins NASA for Historic Mission to Jupiter

Juno spacecraft will "revolutionize" our understanding of the formation of the universe.

Israel, US Sign Cyber Defense Deal at TAU Cyber Conference

Cyber defense cooperation enables two nations to compile and share sensitive cyber security information in "real time."

2016 TLV Film Festival Celebrates 30 Years of Cinematic Imagination

Tel Aviv International Student Film Festival draws heavyweights, rising stars from local and international film industries.

Chinese Officials and Academics Visit TAU to Explore Food Safety

TAU partners with Peking University and OSI Group to host weeklong conference on food safety issues and solutions.

Tel Aviv University Awards UN Chief Highest Honor

UN Secretary-General Ban Ki-moon receives George S. Wise Medal for peace efforts and condemnation of anti-Semitism.

contentSecondary
c

© 2016 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10002 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University