Register for updates

 
 

Astronomy & Astrophysics
RSS Feed
Nearby "Dwarf" Galaxy is Home to Luminous Star Cluster
Tuesday, June 09, 2015 9:30:00 AM

TAU and UCLA researchers surprised to discover more than a million young stars forming in tiny neighboring galaxy

A team of Tel Aviv University and UCLA astronomers have discovered a remarkable cluster of more than a million young stars are forming in a hot, dusty cloud of molecular gases in a tiny galaxy very near our own.

The star cluster is buried within a massive gas cloud dubbed "Cloud D" in the NGC 5253 dwarf galaxy, and, although it's a billion times brighter than our sun, is barely visible, hidden by its own hot gases and dust. The star cluster contains more than 7,000 massive "O" stars: the most brilliant stars extant, each a million times more luminous than our sun.

"Cloud D is an incredibly efficient star and soot factory," says Prof. Sara Beck of TAU's Department of Astronomy and Astrophysics and co-author of the research, recently published in Nature. "This cloud has created a huge cluster of stars, and the stars have created an unprecedented amount of dust."

For the study, Prof. Beck collaborated with Prof. Jean Turner, Chair of UCLA's Department of Physics and Astronomy, and a team of researchers at the Submillimeter Array, a joint project of the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, on Hawaii's Mauna Kea.

A beautiful day in the neighborhood

"Extreme and extraordinary things are happening right in our very own astronomical neighborhood," Prof. Beck says. "In astrophysics we assume that, unless proven otherwise, basic processes are the same everywhere. But here we're witnessing globular cluster formation — a process which we assumed was 'turned off' in our galaxy ten billion years ago — occurring today in a nearby galaxy."

According to the researchers, NGC 5253 is home to hundreds of large star clusters. The most spectacular cluster, cocooned in the massive Cloud D, is about three million years old, remarkably young in astronomical terms. The proportion of gas clouds, which eventually become stars, varies in different parts of the universe. In the Milky Way, for example, less than 5 percent of gas in clouds the size of Cloud D transforms into stars." In the newly discovered Cloud D, however, the rate appears to be least ten times greater.

"This discovery is not an isolated find, but the temporary culmination of a long search which began with a faint radio emission in 1996," Prof. Beck observes. "We have been working for almost twenty years on extreme star formation. Along the way, we started asking why these clusters were being born at a precise time and a certain place. We are still hard at work on this, so this certainly isn't the end of the road for us."

In the future, Cloud D could be destroyed by stars that turn into supernovae — spinning all of the gas and elements into interstellar space. Prof. Beck said her team is continuing to study and monitor the galaxy using the Atacama Large Millimeter/submillimeter Arrray in Chile.

Co-authors of the research include S. Michelle Consiglio, a UCLA graduate student of Turner's; David Meier of the New Mexico Institute of Mining and Technology; Paul Ho of Taiwan's Academia Sinica Astronomy and Astrophysics; and Jun-Hui Zhao of the Harvard-Smithsonian Center for Astrophysics.




Latest News

Marine Vessels are Unsuspecting Hosts of Invasive Species

Half of the ships passing along the Mediterranean coast of Israel carry damaging ascidians, TAU researchers say.

Inauguration of Steinhardt Museum of Natural History Celebrated at TAU on June 26

Historic event held in presence of philanthropist Michael Steinhardt and family, TAU governors, board members and faculty.

Baxter, Ramot at TAU and Tel Aviv Sourasky Medical Center Partner to Bring New Surgical Innovations Worldwide

Agreements will explore potential applications of promising early-stage research in areas of unmet need.

3,000-Year-Old Textiles Are Earliest Evidence of Chemical Dyeing in The Levant

Discovery provides insight into society and copper production in the Timna region at the time of David and Solomon, TAU researchers say.

Zuckerman Scholar Launches State-of-the-Art Laser Laboratory at TAU

Dr. Ishay Pomerantz hopes to lower the cost and size of particle accelerators for more practical social applications.

The Brain Mechanism Behind Multitasking

The brief reactivation of a learned memory can block interference from competing tasks, TAU researchers say.

DNA Delivery Technology Joins Battle Against Drug-Resistant Bacteria

New tool is major milestone against lethal condition, TAU researchers say.

Cardiac Stem Cells from Heart Disease Patients May Be Harmful

TAU researchers discover molecular pathway involved in toxic interaction between host cells and immune system.

Multispectral Imaging Reveals Ancient Hebrew Inscription Undetected for Over 50 Years

Military correspondence from the First Temple period discovered on reverse side of well-studied artifact at The Israel Museum, TAU researchers say.

Earliest Human Impact on the Environment Took Place 11,500 Years Ago

The earliest geological indication of humans' impact on the environment discovered in the Dead Sea, TAU researchers say.

IDEAS Immersion Program to Host Nine Female Entrepreneurs from TAU

Acceleration program partners with Cross Campus and Google to help budding women entrepreneurs incubate startups.

Prof. Jacob A. Frenkel Elected to Second Term as Chairman of TAU's Board of Governors

Internationally-acclaimed economist will continue to "greatly contribute to the further development of Tel Aviv University," said TAU President Prof. Yossi Klafter.

Solving the Riddle of the Snow Globe

TAU research explains the process of sedimentation in natural and industrial contexts.

contentSecondary
c

© 2017 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University