Register for updates

 
 

Astronomy & Astrophysics
RSS Feed
Gravitational Waves Detected Following Collision of Neutron Stars 120 Million Light Years Away
Monday, October 16, 2017 9:49:00 AM

TAU utilizes Nobel-winning research to expand understanding of the universe

On August 17, 2017, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in Louisiana and Washington and at the Virgo detector in Italy detected the first "ripples in space," or gravitational waves, produced by the merger of two ancient remnants of stars known as neutron stars.

The 2017 Nobel Prize in Physics was awarded to the creators of the LIGO instrument and its detection of gravitational waves. Scientists at Tel Aviv University are racing to use results from the LIGO experiments to expand our understanding of the universe, with the new discovery appearing today in Science and Nature. An additional TAU study is appearing in the Astrophysical Journal.

"This is a milestone in the growing effort by scientists worldwide to unlock the mysteries of the universe and of earth," says Prof. Ehud Nakar of TAU's Raymond and Beverly Sackler School of Physics and Astronomy, who together with his graduate student Ore Gottlieb led the theoretical analysis for the new studies on the discovery appearing today in Science and Nature. (Read about Prof. Nakar's relationship with the GROWTH program at CalTech here.)

The studies were led by Dr. Yair Arcavi, who joins TAU's School of Physics and Astronomy next year from UC Santa Barbara, in collaboration with Prof. Dovi Poznanski, Prof. Dan Maoz and their students at TAU's School of Physics and Astronomy.

Building on Einstein

The existence of gravitational waves was first predicted by Albert Einstein a century ago. They afford insight into an event that took place in a galaxy 120 million light years away and provide valuable information on the evolution of exploding neutron stars, as well as the origin of gold, uranium and other heavy metals on earth.

"It is difficult to exaggerate the importance of this discovery," says Prof. Poznanksi. "Until recently, we could observe the universe only through light waves that reached us. This new ability to study gravitational waves is analogous to a sense of touch. It's as though we now have the ability to explore the universe through both sight and touch."

"This discovery has allowed astronomers to combine gravitational waves with light and produce a detailed model of the emission for the first time. This introduces a new era in astronomy," says Gottlieb.

A neutron star forms when a star much bigger and brighter than the sun exhausts its thermonuclear fuel supply and explodes into a violent supernova. The explosion of neutron stars, which are made almost entirely of neutrons, was detected by multiple telescopes across the electromagnetic spectrum, from gamma rays and visible light to radio waves.

"This is only the beginning," Prof. Maoz notes. "We expect many surprising discoveries in the coming years."

Video: Animation of a merger of two neutron stars and its aftermath. Credit: NRAO/AUI/NSF.

Animation of Neutron Star Merger and Aftermath from NRAO Outreach on Vimeo.

GROWTH (Global Relay of Observatories Watching Transients Happen) is an international collaborative project in astronomy, funded by the National Science Foundation under PIRE Grant No. 1545949, with additional support from the Japan Society for the Promotion of Science; the Ministry of Science & Technology in Taiwan; and the Science and Engineering Research Board, Department of Science and Technology in India. Led by the California Institute of Technology, GROWTH is a partnership among 14 institutions in the USA, Japan, Taiwan, India, Israel, Sweden, Germany and the UK.




Latest News

Breast Cancer Recruits Bone Marrow Cells to Increase Cancer Cell Proliferation

Cancer-associated fibroblasts are derived from bone marrow cells called mesenchymal stromal cells, TAU researchers say.

Epigenetic Map May Pave Way for New Therapeutic Solutions to Hearing Loss

Understanding the expression of and controlling the genes involved in hearing are milestone discoveries, TAU researchers say.

Gas Clouds Whirling Around Black Hole Form Heart of Extremely Distant Luminous Astronomical Object

Discovery is the first detailed observation of the environs of a massive black hole outside the Milky Way.

The Tactics Behind "Taking to the Streets"

A new book by TAU researcher explores importance of public space in the design of social protests.

Training Program for Adults with Intellectual Disabilities Opens at TAU's School of Dental Medicine

Pilot program launched by TAU and AKIM helps students find jobs and changes attitudes about people with special needs.

TAU and its American Friends to Honor Susan and Henry Samueli at International Gala in Los Angeles

Philanthropists and Stanley Cup Winners to be recognized; Noa Tishby to serve as event emcee.

Astronomers Discover Giant Relic of Disrupted "Tadpole" Galaxy

Discovery illuminates how and why galaxies disappear, say TAU researchers.

Drug Candidate May Recover Vocal Abilities Lost to ADNP Syndrome

Protein snippet normalizes disrupted neural connectivity caused by genetic disorder, TAU researchers say.

TAU and Northwestern University Launch Joint Nanoscience Program

Collaboration to include student exchange program, post-doctoral scholarships and research grants.

Scientists Use Patients' Own Cells and Materials to Engineer Fully Personalized Tissue Implants of Any Kind

Risk of an immune response to an organ implant virtually disappears, TAU researchers say.

contentSecondary
c

© 2018 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University