Register for updates

 
 

Astronomy & Astrophysics
RSS Feed
In Neutron Stars, Protons May Do the Heavy Lifting
Tuesday, August 14, 2018 9:00:00 AM

New TAU/MIT/ODU study finds that a small fraction of protons in neutron-dense objects can significantly impact their properties

Neutron stars are the smallest, densest stars in the universe, born out of the gravitational collapse of extremely massive stars. True to their name, neutron stars are composed almost entirely of neutrons — neutral subatomic particles that have been compressed into a small, incredibly dense celestial package.

A new study in Nature suggests that some properties of neutron stars may be influenced not only by their multitude of densely packed neutrons, but also by a substantially smaller fraction of protons — positively charged particles that make up just 5 percent of a neutron star. Because protons may carry substantially more energy than previously thought, they may contribute to properties of a neutron star such as its stiffness, its ratio of mass to size and its process of cooling.

The research was led by Prof. Eli Piasetzky of Tel Aviv University's School of Physics, Prof. Or Hen of the Massachusetts Institute of Technology (MIT), and Prof. Larry Weinstein of Old Dominion University. The graduate student who analyzed the data was Meytal Duer of TAU's School of Physics.

Protons more significant than originally believed

"This finding may shake up scientists' understanding of how neutron stars behave," says Prof. Hen of MIT's Laboratory of Nuclear Science.

"We think that when you have a neutron-rich nucleus, the protons move faster than the neutrons, so in some sense protons carry the action on average," Prof. Hen continues. "Even though protons are the minority in the star, we think the minority rules. Protons seem to be very active, and we think they might determine several properties of the star."

"The cosmological abundance of nuclei is not well understood," says Prof. Piasetzky. "We think that the merging of two neutron stars is one of the main processes in the universe that create nuclei heavier than iron, such as gold. Our study of neutron-rich nuclei indicates that we must reconsider the role played by the small fraction of protons in the neutron star and its impact on the nuclei creation process."

The researchers looked for signs of proton and neutron pairs in carbon, aluminium, iron and lead nuclei, each with a progressively higher ratio of neutrons to protons. They found that, as the relative number of neutrons in an atom increased, so did the probability that a proton would form an energetic pair. The likelihood that a neutron would pair up, however, stayed about the same.

"This trend suggests that, in objects with high neutron density, the minority protons carry a disproportionally large part of the average energy," says Prof. Piasetzky.

Squeezing more science out of an experiment

Research for the study was based on data previously collected by CLAS — the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer, a particle accelerator and detector based at Thomas Jefferson Laboratory in Virginia. The team chose to mine data collected during a 2004 experiment in which electrons bombarded carbon, iron and lead nuclei, with the goal of observing how particles produced in nuclear interactions travel through each nucleus's respectively larger volume.

Along with their varying sizes, each of the four nuclei has a different ratio of neutrons to protons, with carbon having the fewest neutrons and lead the most. The group studied the data for signs of high-energy protons and neutrons — indications that the particles had paired up — and whether the probability of this pairing changed as the ratio of neutrons to protons increased.

"People were using the detector to look at specific interactions, but it also measured a bunch of other reactions that took place at the same time," says Prof. Larry Weinstein of Old Dominion University. "So we thought, let's dig into this data and see if there's anything interesting there. We want to squeeze as much science as we can out of experiments that have already run."

Eventually, the team observed that as the number of neutrons in an atom's nucleus increased, the probability of protons having high energies (and having paired up with a neutron) increased significantly. The probability for neutrons to have these high energies remained the same.

Photo: The CLAS spectrometer at the Jefferson Laboratory accelerator in Virginia. Credit: Jefferson Laboratory.




Latest News

Study Finds Prehistoric Humans Ate Bone Marrow Like Canned Soup 400,000 Years Ago

Bone and skin preserved the nutritious marrow for later consumption, TAU researchers say.

TAU and Ichilov Researchers Develop Innovative Treatment for Familial Adenomatous Polyposis

Adolescents and young adults with the inherited disorder bear a high risk of developing colorectal cancer.

Engineered T Cells May Be Harnessed to Kill Solid Tumor Cells

Novel immunotherapy extends therapy now used in fighting leukemia, TAU researchers say.

Researchers Discover How a Protein Connecting Calcium and Plant Hormone Regulates Plant Growth

Mechanism enables plants to adapt their development to their environment, TAU researchers say.

LocalTAU Top Scientists Move Closer to Securing Pilot Program in Miami

Fellows from competition return to Miami to present at marine health summit and participate in high-level meetings.

TAU Researchers Discover Evidence of Biblical Kingdom of Edom in Arava Desert

Findings also suggest pharaoh's influence on Edom turned kingdom into copper powerhouse, say TAU researchers.

Business and Civic Leader Mort Mandel Awarded TAU Honorary Doctorate

Mr. Mandel cited for his visionary philanthropy and establishment of the Jack, Joseph and Morton Mandel Center for STEM and the Humanities at TAU.

Early Humans Used Tiny, Flint "Surgical" Tools to Butcher Elephants

New discovery by TAU-led research group suggests early humans in the Levant were sophisticated and environmentally conscious.

TAU Ranks Among Top 10 Undergraduate Programs Producing Most Venture Capital-Backed Entrepreneurs

Joining Stanford, UC Berkeley, and MIT, TAU is the only non-U.S. university to make top 10 of global VC list.

Protein Mapping Pinpoints Why Most Metastatic Melanoma Patients Do Not Respond to Immunotherapy

Lipid metabolism found to affect cancer cells' visibility to the immune system, say TAU, Sheba Medical Center researchers.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University