Register for updates

 
 

Biology & Evolution
RSS Feed
From the Omelette to the Egg: Reversing Protein Aggregations
Monday, December 18, 2017 9:00:00 AM

Some protein aggregations are reversible and beneficial, TAU researchers say

To cook an omelette, you have to scramble an egg, and like Humpty Dumpty it can never be put back together again. This is because the egg undergoes a set of physiological and chemical changes as it cooks, which cause its chemical bonds to break and its proteins to aggregate, restructuring and setting into a new, final — and irreversible — shape.

However, a new Tel Aviv University study suggests for the first time a novel form of protein aggregation that is both reversible and has positive physiological consequences for cells. The discovery may eventually lead to new therapies for neurodegenerative conditions such as Alzheimer's, Parkinson's and "mad cow" diseases.

The research study was led by Prof. Martin Kupiec and conducted by Dr. Kobi Simpson-Lavy, both of TAU's School of Molecular Cell Biology and Biotechnology, and published in the journal Molecular Cell.

How to "de-blob" a protein

"Most of the functions within our cells are carried out by proteins. But when these proteins aggregate, they produce a 'blob' that renders them inactive," Prof. Kupiec says. "Protein aggregation tends to increase with age and leads to a number of human diseases, particularly those resulting in neurodegeneration."

"Moreover, when proteins adopt an erroneous configuration — when they're misfolded — the cells attempt to take the clumps apart, or to pile them up at particular locations in the cell, to minimize their toxic effect," Dr. Simpson-Lavy says. "This process has been linked to the development of a number of neurodegenerative conditions, such as Alzheimer's, Parkinson's and 'mad cow' diseases."

The new study examines an entirely different type of protein aggregation, which may provide a new mechanism with which to regulate the activity of genes according to changes in the cell's environment.

The research for the study emerged serendipitously. While Dr. Simpson-Lavy was studying the metabolism of sugars in yeast cells, he noticed that a tagged version of the protein he was observing — Std1 — formed a bright splotch outside the cell's nucleus whenever glucose was added to the cells.

In other words, Std1, which is usually present in the cells' nuclei, where the genome resides, ended up in an aggregation outside of the nuclei.

"We wondered whether this protein aggregation would change according to different conditions in the microenvironment of the cell," Prof. Kupiec says. "And indeed, when conditions changed again and glucose was depleted, the aggregate dissolved and the Std1 protein could be seen again in the nucleus. Std1 plays a role in responding to different sugars in the growth medium, so the reversible aggregation and dissolution of Std1 allowed the cell to respond quickly to varying levels of sugar abundance."

Bad — and good — for you

The study also suggests that not all protein aggregates are "bad for you." Some play important physiological and regulatory roles. According to the study, the "molecular chaperones" that have been found to fuel many neurodegenerative diseases may have originally been intended to regulate the buildup of non-pathological proteins.

"These results could open the way for possible future treatments that may try to change the aggregation from irreversible to reversible," Prof. Kupiec says. "If we can find out how to turn an irreversible aggregation into a reversible one, it would be possible to treat neurodegenerative diseases and reverse the effect of the aggregates.

"In other words, it may still be possible to reconstruct an egg from an omelette," Prof. Kupiec observes.

The researchers are currently examining what makes the same protein behave differently under different conditions.




Latest News

Moderate Decline in Violent Attacks Against Jews, But Attacks Are Becoming More Brutal

European Jews harbor increasingly "grave concerns for their security," annual TAU Kantor Center study reports.

TAU Announces Early-Stage Venture Fund to Invest in Student Innovation

TAU Ventures similar to funds at universities such as MIT, UC Berkeley and Stanford.

How Advanced Nanotechnology Can Improve Cancer Care

TAU, Harvard University researchers discuss untapped potential of targeted nanocarriers to revolutionize cancer therapy.

Antidepressants May Prevent Hospitalization Relapses in Bipolar Depression Patients

Study finds apparent benefits of addition of adjunctive antidepressants to mood stabilizers, TAU researchers say.

Koret Foundation Funds $10 Million Collaborative Initiative between TAU, Stanford University, and UC Berkeley

Grant designed to advance breakthroughs in medical and information technology.

Eastern Mediterranean Summer Will be Two Months Longer by End of 21st Century

Climate changes will cut winter in the region by half, TAU researchers say.

Having a Sibling Makes You More Empathetic, Study Finds

Younger and older siblings uniquely contribute to each other's development of empathy, TAU researchers say.

Non-invasive Brain Stimulation Improves Crucial Gait Impairment of Parkinson's Disease Patients

Transcranial direct current therapy positively impacts mobility and executive functions, TAU researchers say.

Search for First Stars Uncovers "Dark Matter"

Discovery offers first direct proof that dark matter exists and that it is made up of low-mass particles, TAU researcher says.

Scientists Discover Critical Molecular Biomarkers of Preeclampsia

Small non-coding RNAs may be used to devise a diagnostic blood test for pregnant women, TAU researchers say.

contentSecondary
c

© 2018 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University