Register for updates

 
 

Biology & Evolution
RSS Feed
From the Omelette to the Egg: Reversing Protein Aggregations
Monday, December 18, 2017 9:00:00 AM

Some protein aggregations are reversible and beneficial, TAU researchers say

To cook an omelette, you have to scramble an egg, and like Humpty Dumpty it can never be put back together again. This is because the egg undergoes a set of physiological and chemical changes as it cooks, which cause its chemical bonds to break and its proteins to aggregate, restructuring and setting into a new, final — and irreversible — shape.

However, a new Tel Aviv University study suggests for the first time a novel form of protein aggregation that is both reversible and has positive physiological consequences for cells. The discovery may eventually lead to new therapies for neurodegenerative conditions such as Alzheimer's, Parkinson's and "mad cow" diseases.

The research study was led by Prof. Martin Kupiec and conducted by Dr. Kobi Simpson-Lavy, both of TAU's School of Molecular Cell Biology and Biotechnology, and published in the journal Molecular Cell.

How to "de-blob" a protein

"Most of the functions within our cells are carried out by proteins. But when these proteins aggregate, they produce a 'blob' that renders them inactive," Prof. Kupiec says. "Protein aggregation tends to increase with age and leads to a number of human diseases, particularly those resulting in neurodegeneration."

"Moreover, when proteins adopt an erroneous configuration — when they're misfolded — the cells attempt to take the clumps apart, or to pile them up at particular locations in the cell, to minimize their toxic effect," Dr. Simpson-Lavy says. "This process has been linked to the development of a number of neurodegenerative conditions, such as Alzheimer's, Parkinson's and 'mad cow' diseases."

The new study examines an entirely different type of protein aggregation, which may provide a new mechanism with which to regulate the activity of genes according to changes in the cell's environment.

The research for the study emerged serendipitously. While Dr. Simpson-Lavy was studying the metabolism of sugars in yeast cells, he noticed that a tagged version of the protein he was observing — Std1 — formed a bright splotch outside the cell's nucleus whenever glucose was added to the cells.

In other words, Std1, which is usually present in the cells' nuclei, where the genome resides, ended up in an aggregation outside of the nuclei.

"We wondered whether this protein aggregation would change according to different conditions in the microenvironment of the cell," Prof. Kupiec says. "And indeed, when conditions changed again and glucose was depleted, the aggregate dissolved and the Std1 protein could be seen again in the nucleus. Std1 plays a role in responding to different sugars in the growth medium, so the reversible aggregation and dissolution of Std1 allowed the cell to respond quickly to varying levels of sugar abundance."

Bad — and good — for you

The study also suggests that not all protein aggregates are "bad for you." Some play important physiological and regulatory roles. According to the study, the "molecular chaperones" that have been found to fuel many neurodegenerative diseases may have originally been intended to regulate the buildup of non-pathological proteins.

"These results could open the way for possible future treatments that may try to change the aggregation from irreversible to reversible," Prof. Kupiec says. "If we can find out how to turn an irreversible aggregation into a reversible one, it would be possible to treat neurodegenerative diseases and reverse the effect of the aggregates.

"In other words, it may still be possible to reconstruct an egg from an omelette," Prof. Kupiec observes.

The researchers are currently examining what makes the same protein behave differently under different conditions.




Latest News

Buchmann-Mehta in Miami

Musicians from the Israel Philharmonic Orchestra and TAU will showcase their institutions' historic partnership on February 8.

Israel Dig Unearths Prehistoric "Paradise"

TAU, Israel Antiquities archaeologists uncover 500,000-year-old site described as a "paradise" for hunter-gatherers.

TAU Archaeologists Discover "Oldest School in the World"

Ancestors of modern humans taught their children how to make flint tools at prehistoric school, researchers say.

Novel Nanomedicine Inhibits the Progression of Pancreatic Cancer in Mouse Models, TAU Researchers Say

Survival rates in pancreatic cancer linked to inverse correlation between specific oncogene and tumor suppressant.

From the Omelette to the Egg: Reversing Protein Aggregations

Some protein aggregations are reversible and beneficial, TAU researchers say.

TAU Scientists Make Paralyzed Rats Walk Again

Using stem cell-based biomedical engineering to rehabilitate a severed spinal cord, TAU and Technion scientists restore control of their legs.

Byzantine Mosaic Unearthed at Ashdod-Yam in Israel

Greek inscription is earliest known use of the Georgian calendar, TAU researchers say.

Hyperbaric Oxygen Therapy May Alleviate Symptoms of Alzheimer's Disease

Treatment has potential to correct behavioral and physical deficits associated with the disease, TAU researchers say.

Skipping Breakfast Disrupts "Clock Genes" that Regulate Body Weight and Glucose

Consuming breakfast normalizes the expression of genes that improve insulin and glucose responses all day long, TAU researchers say.

Dual Virtual Reality/Treadmill Exercises Promote Brain Plasticity in Parkinson's Patients

Therapy effective even in later stages of the disease, TAU researchers say.

contentSecondary
c

© 2018 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University