Register for updates

 
 

Biology & Evolution
RSS Feed
TAU Discovery May Redefine Traditional Classifications in the Animal Kingdom
Wednesday, November 18, 2015 9:00:00 AM

Research finds a close cousin of the jellyfish evolved into a microscopic parasite that lives in fish

Children are taught that all living organisms — from animals, plants, and fungi to bacteria and single-celled organisms — belong to specifically different categories of organic life. A new discovery by Tel Aviv University researchers and international collaborators is poised to redefine the very criteria used to define and classify these animals.

Researchers have found that a close cousin of the jellyfish has evolved over time into a microscopic parasite. The finding represents the first case of extreme evolutionary degeneration of an animal body.

The research was led by Prof. Dorothée Huchon of TAU's Department of Zoology and Prof. Paulyn Cartwright of the University of Kansas, in collaboration with Prof. Arik Diamant of Israel's National Center for Mariculture and Prof. Hervé Philippe of the Centre for Biodiversity Theory and Modelling, CNRS, France. It was published this week in the Proceedings of the National Academy of Scientists.

What makes a myxozoan

The international research used genome sequencing to find that myxozoans, a diverse group of microscopic parasites that infect invertebrate and vertebrate hosts, are actually are highly degenerated cnidarians — the category or phylum that includes jellyfish, corals and sea anemones.

"These micro-jellyfish expand our basic understanding of what makes up an animal," said Prof. Huchon. "What's more, the confirmation that myxozoans are cnidarians demands the re-classification of myxozoa into the phylum cnidaria."

Despite the radical changes in its body structure and genome over millions of years, the myxozoa have retained some of the basic characteristics of the jellyfish, including the essential genes to produce the jellyfish stinger.

"The myxozoa are microscopic — only a few cells measuring 10 to 20 microns across — and therefore biologists assumed that they were single-celled organisms," said Prof. Huchon. "But when we sequenced their DNA, we discovered the genome of an extremely strange macroscopic marine animal."

Real-world applications

The discovery of the dramatic change from macroscopic marine animal to microscopic parasite is interesting on its own, but it may also have commercial applications, as myxozoa commonly plague commercial fish stock such as trout and salmon.

"Some myxozoa cause a neurological problem in salmon called 'whirling disease,'" said Prof. Huchon. "These fish parasites cause tremendous damage to the fish industry, and unfortunately there is no general treatment against them. We hope that our data will lead to a better understanding of the biology of these organisms and the development of more effective drugs to fight against myxozoa."

The researchers are currently studying the evolution in myxozoa of genes that form the stinging organ of jellyfish. The study was funded by the National Science Foundation, the Binational Science Foundation, and the Israel Science Foundation.




Latest News

Milner Foundation Donates $3 Million to Magen David Adom, TAU and Tel Aviv Sourasky Medical Center (Ichilov)

This "critical injection of oxygen" is expected to increase coronavirus remote testing and research.

New Sleep Method Strengthens Brain’s Ability to Retain Memories

Process that uses smell can strengthen memories stored in one side of the brain, say TAU, Weizmann researchers.

High Blood Pressure in Young Adulthood Associated With Cognitive Decline and Gait Impairment in Middle Age

TAU, Northwestern University study follows the blood pressure of dozens of people over a 30-year period.

TAU Researchers Discover Unique Non-Oxygen Breathing Animal

The tiny relative of the jellyfish is parasitic and dwells in salmon tissue.

TAU Researchers Discover Receptor Chain Involved in Atopic Dermatitis

Researchers also formulate a novel antibody capable of blocking the development of the skin condition in mice.

Disease Found in Fossilized Dinosaur Tail Afflicts Humans To This Day

The rare disease LCH discovered in the remains of a dinosaur that lived in Canada at least 60 million years ago, TAU researchers say.

TAU Researchers Demonstrate Optical Backflow of Light

"Abnormal" behavior predicted more than 50 years ago may help scientists probe the atmosphere and gauge the environment.

Induced Flaws in Metamaterials Can Produce Useful Textures and Behavior

Discovery advances the understanding of structural defects and their topological properties, TAU researchers say.

Iron Age Temple Complex Discovered Near Jerusalem Calls Into Question Biblical Depiction of Centralized Cult

Tel Moẓa site proves there were other sanctioned temples besides the official temple in Jerusalem, TAU researchers say.

contentSecondary
c

© 2020 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University