Register for updates

 
 

Computers & Technology
RSS Feed
"Robot Locust" Can Traverse Rocky Terrain and Assist in Search and Rescue
Thursday, December 17, 2015 9:30:00 AM

TAU researcher develops locust-inspired robot capable of jumping twice as high as existing robots of its kind

Since the 1980s, advanced robotic platforms have provided assistance to crisis intervention teams in the wake of man-made and natural disasters. The objective of such robots, in various sizes and shapes, has been to intervene where humans cannot and send life-saving data to rescue teams in the field.

A new miniature robot is poised to make a major contribution to the field of advanced robotics. The new locust-inspired robot, dubbed "TAUB" (for "Tel Aviv University and Ort Braude College"), is five inches long and weighs less than one ounce. It can jump 11 feet high — more than twice the height of similar-sized robots — and cover a horizontal distance of 4.5 feet in one leap. The researchers believe the TAUB will perform well in search-and-rescue missions and in reconnaissance operations in rough terrain.

The robot is the result of a collaboration between Prof. Amir Ayali of the Department of Zoology at Tel Aviv University's Faculty of Life Sciences, Dr. Gabor Kosa of TAU's Faculty of Engineering and Dr. Uri Ben-Hanan of the Department of Mechanical Engineering at Ort Braude College. The research for the study was primarily conducted by TAU engineering students Valentin Zeitsev and Omer Gvirsman, as well as Dr. Avi Weiss of Ort Braude College. The research was recently published in Bioinspiration & Biomimetics.

Inspired by nature

"Our locust-inspired miniature jumping robot is a beautiful example of bio-inspired technological innovation," said Prof. Ayali. "Miniature robots are of special interest in the robotics field, attracting a lot of attention and research. The manufacture of tiny robots is cheap and efficient; their small size allows them to traverse difficult and unknown terrain; and many can be used in any given situation."

The scientists printed out the body of the robot on a 3D printer harnessing ABS plastic (the same material Legos are made of). The robot's legs were composed of stiff carbon rods, and its torsion springs of steel wire. A small on-board battery powers the robot, which is remotely controlled through an on-board microcontroller.

"Our research is a true interdisciplinary biology-engineering collaborative effort," said Prof. Ayali. "Biological knowledge, gained by observing and studying locusts, was combined with state-of-the-art engineering and cutting-edge technologies, allowing biological principles to be implemented in a miniature robotic jumping mechanism."

The same, but different

Researchers did not attempt to produce an exact mechanical replica of a locust. They focused instead on some of the specific biomechanical features of the locust's highly successful jump mechanism.

A locust catapults itself in a three-stage process. First, the legs are bent in the preparation stage. Then the legs are locked in place at the joint. Finally, a sudden release of the flexor muscle on the upper leg unlocks the joint and causes a rapid release of energy. This creates a fast-kicking movement of the legs that propels the locust into the air.

Like the locust, which uses stored mechanical energy to enhance the action of its leg muscles, the robot's "high-jump" is due to its ability to store energy in its torsion springs.

The researchers are currently working on a gliding mechanism that will enable the robot to extend its jumping range, lower its landing impact, execute multiple steered jumps and stabilize while airborne, expanding the possible field applications of the robot.




Latest News

TAU and Technion Researchers Wrest Control of One of World's Most Secure PLCs

Rogue engineering station instigated "hostile intervention" of Siemens programmable logic controller that runs industrial processes.

Novel Immunotherapy May Prevent Brain Metastases

Injection of synthetic DNA material found to activate brain's immune cells and kill invading tumor cells, TAU researchers say.

TAU Scientists Develop Novel Nano-Vaccine for Melanoma

Injection of nanoparticle has proven effective in mouse models, researchers say.

Genetic Screen Identifies Genes That Protect Cells from Zika Virus

Genes found to safeguard against infection as well as resuscitate infected cells, TAU researchers say.

Jennifer Gross Named Chief Executive Officer of AFTAU

Accomplished executive brings extensive experience from Jewish philanthropy and the financial services industry.

Fat Cells Play Key Role in Dangerous Transformation of Melanoma

Fat cells allow melanoma cells to penetrate the dermis, causing fatal metastases in vital organs, TAU researchers say.

New Antibacterial Fillings from TAU May Combat Recurring Tooth Decay

Novel material may prevent one of the costliest and most prevalent bacterial diseases in the world.

First Proof-of-Concept Demonstrates Genetic Sex Selection in Mammals

Crossed transgenic mouse lines struck males without affecting females, TAU researchers say.

2019 Tel Aviv International Student Film Festival Looks to the Future

International students, filmmakers and glitterati flock to 21st edition of festival, held throughout the city of Tel Aviv.

TAU Scientist Prof. Judith Berman Is Elected Member of European Molecular Biology Organization

EMBO promotes excellence in the life sciences in Europe and beyond.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University