Register for updates

 
 

Computers & Technology
RSS Feed
Flexible Building Blocks of the Future
Friday, July 29, 2016 9:30:00 AM

New mechanical "metamaterial" developed at TAU may revolutionize prosthetics and wearable technologies

Ill-fitting joint sockets, contact dermatitis and sebaceous cysts are just a few of the problems plaguing prosthetic patients. They are all a result of the pressure that their prosthetic devices place on the soft tissue of their bodies.

Now researchers at Tel Aviv University, FOM Institute AMOLF and Leiden University in the Netherlands have developed a new approach to manufacturing mechanical "metamaterials" — synthetic composite materials with structures and properties not usually found in natural materials — that can be programmed to deform in a uniquely complex manner.

The breakthrough may have future applications in soft robotics and wearable technologies — and may lead to more close-fitting, comfortable and user-friendly prosthetics. The research was published this week in the journal Nature.

Putting a smile on a cube

Dr. Yair Shokef of TAU's School of Mechanical Engineering and Prof. Martin van Hecke of Leiden University and AMOLF, the Netherlands, illustrated their approach through a three-dimensional printing of a metamaterial cube. A smiley-face pattern emerged on the side of the cube when it was compressed between custom-patterned surfaces.

To demonstrate that any pattern can be produced on a cube's surface, the 
researchers developed a cube of 10x10x10 centimeter blocks
on which a smiley appears when the cube is compressed.
Photo: Corentin Coulais.

"We started with a series of flexible building blocks, or bricks, that had deformation properties that varied with their position," said Dr. Shokef. "The blocks were able to change their shape when we applied pressure. From there, we were able to develop a new design principle to enable these bricks to be oriented and assembled into a larger metamaterial with machine-like functionalities."

The metamaterial has the unusual property that spatially-patterned compression in one direction leads to predictable spatially-patterned deformation (dents and protrusions) in other directions.

"A pattern of specific bulges appears when our seemingly normal cube is compressed," said Dr. Shokef. "Using metamaterials, we can 'program' the material's behavior by carefully designing its spatial structure."

"For example, a pattern of holes in a sheet of material produces a mechanical response that is completely different than in the same material without holes," said Prof. van Hecke. "We also wanted to investigate this phenomenon for a three-dimensional pattern of holes."

One cube atop another

The researchers calculated the number of possible stacks for different cubes of building blocks. They then developed a cube of 10x10x10 centimeter blocks on which a smiley face appears when the cube is compressed. This demonstrated that any given pattern can be produced on a cube's surface.

"For each possible stack, the deformation within the cube results in a specific pattern on the sides of the cube," said Dr. Shokef. "We can carefully combine the building blocks in a way that any desired pattern can appear on the sides of a compressed cube. We can also use the cube to analyze these patterns."

There are many applications on the horizon for this new basic research. "This type of programmable 'machine material' could be ideal for prostheses or wearable technology in which a close fit with the body is important," Dr. Shokef said. "If we can make the building blocks even more complex or produce these from other materials, the possibilities really are endless."

Explanatory video:
http://vimeo.com/173274940
https://www.youtube.com/watch?v=NxcCtimWxn0




Latest News

TAU and Technion Researchers Wrest Control of One of World's Most Secure PLCs

Rogue engineering station instigated "hostile intervention" of Siemens programmable logic controller that runs industrial processes.

Novel Immunotherapy May Prevent Brain Metastases

Injection of synthetic DNA material found to activate brain's immune cells and kill invading tumor cells, TAU researchers say.

TAU Scientists Develop Novel Nano-Vaccine for Melanoma

Injection of nanoparticle has proven effective in mouse models, researchers say.

Genetic Screen Identifies Genes That Protect Cells from Zika Virus

Genes found to safeguard against infection as well as resuscitate infected cells, TAU researchers say.

Jennifer Gross Named Chief Executive Officer of AFTAU

Accomplished executive brings extensive experience from Jewish philanthropy and the financial services industry.

Fat Cells Play Key Role in Dangerous Transformation of Melanoma

Fat cells allow melanoma cells to penetrate the dermis, causing fatal metastases in vital organs, TAU researchers say.

New Antibacterial Fillings from TAU May Combat Recurring Tooth Decay

Novel material may prevent one of the costliest and most prevalent bacterial diseases in the world.

First Proof-of-Concept Demonstrates Genetic Sex Selection in Mammals

Crossed transgenic mouse lines struck males without affecting females, TAU researchers say.

2019 Tel Aviv International Student Film Festival Looks to the Future

International students, filmmakers and glitterati flock to 21st edition of festival, held throughout the city of Tel Aviv.

TAU Scientist Prof. Judith Berman Is Elected Member of European Molecular Biology Organization

EMBO promotes excellence in the life sciences in Europe and beyond.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University