Register for updates

 
 

Computers & Technology
RSS Feed
Microscale Superlubricity Could Pave Way for Future Improved Electromechanical Devices
Wednesday, August 01, 2018 9:00:00 AM

Discovery may lead to more robust computer hard discs, TAU and Tsinghua University researchers say

Lubricity measures the reduction in mechanical friction and wear by a lubricant. These are the main causes of component failure and energy loss in mechanical and electromechanical systems. For example, one-third of the fuel-based energy in vehicles is expended in overcoming friction. So superlubricity — the state of ultra-low friction and wear — holds great promise for the reduction of frictional wear in mechanical and automatic devices.

A new joint Tel Aviv University/Tsinghua University study finds that robust structural superlubricity can be achieved between dissimilar, microscale-layered materials under high external loads and ambient conditions. The researchers found that microscale interfaces between graphite and hexagonal boron nitride exhibit ultra-low friction and wear. This is an important milestone for future technological applications in space, automotive, electronics and medical industries.

The research is the product of a collaboration between Prof. Oded Hod and Prof. Michael Urbakh of TAU's School of Chemistry; and Prof. Ming Ma and Prof. Quanshui Zheng of Tsinghua University's Department of Mechanical Engineering and their colleagues. It was conducted under the auspices of the joint TAU-Tsinghua collaborative XIN Center and was published in Nature Materials on July 30. The paper can be found at https://www.nature.com/articles/s41563-018-0144-z.

Enormous implications for computer and other devices

The new interface is six orders of magnitude larger in surface area than earlier nanoscale measurements and exhibits robust superlubricity in all interfacial orientations and under ambient conditions.

"Superlubricity is a highly intriguing physical phenomenon, a state of practically zero or ultra-low friction between two contacting surfaces," says Prof. Hod. "The practical implications of achieving robust superlubricity in macroscopic dimensions are enormous. The expected energy savings and wear prevention are huge."

"This discovery may lead to a new generation of computer hard discs with a higher density of stored information and enhanced speed of information transfer, for example," adds Prof. Urbakh. "This can be also used in a new generation of ball bearing to reduce rotational friction and support radial and axial loads. Their energy losses and wear will be significantly lower than in existing devices."

The experimental part of the research was performed using atomic force microscopes at Tsinghua and the fully atomistic computer simulations were completed at TAU. The researchers also characterized the degree of crystallinity of the graphitic surfaces by conducting spectroscopy measurements.

Close collaboration

The study arose from an earlier prediction by theoretical and computational groups at TAU that robust structural superlubricity could be achieved by forming interfaces between the materials graphene and hexagonal boron nitride. "These two materials are currently in the news following the 2010 Nobel Prize in Physics, which was awarded for groundbreaking experiments with the two-dimensional material graphene. Superlubricity is one of their most promising practical applications," says Prof. Hod.

"Our study is a tight collaboration between TAU theoretical and computational groups and Tsinghua's experimental group," says Prof. Urbakh. "There is a synergic cooperation between the groups. Theory and computation feed laboratory experiments that, in turn, provide important realizations and valuable results that can be rationalized via the computational studies to refine the theory."

The research groups are continuing to collaborate in this field studying the fundamentals of superlubricity, its extensive applications and its effect in ever larger interfaces.




Latest News

Lightning's Electromagnetic Fields May Have Protective Properties

Extremely low frequency fields may have played an evolutionary role in living organisms, say TAU researchers.

Study Links Adult Fibromyalgia to Childhood Sexual Abuse

Hyperbaric oxygen therapy sessions are an effective treatment, TAU researchers say.

Adolescents With Celiac Disease Are at Higher Risk of Eating Disorders

Overweight teenage girls with CD are at highest risk of developing early hallmarks of full-blown eating disorders, TAU researchers say.

White Blood Cells Related to Allergies and Asthma May Also Be Harnessed to Destroy Cancer Cells

Eosinophil immune cells are capable of killing colon cancer cells, TAU researchers say.

New Yeast Model of Metabolic Disorders May Lead to Life-saving Therapies

Unicellular organism mimics pathology and symptoms of congenital diseases, TAU researchers say.

TAU-Led International Team Discovers New Way Supermassive Black Holes Are "Fed"

These "giant monsters" were observed suddenly devouring gas in their surroundings.

New Biomarker Links Cancer Progression to Genome Instability

High level of specific protein in tumors indicates prognosis as well as optimal treatments, TAU researchers say.

Microplastics and Plastic Additives Discovered in Ascidians All Along Israel's Coastline

TAU report is first to assess presence of plastic additives in Eastern Mediterranean and Red Sea marine life.

Heart Cell Defect Identified as Possible Cause of Heart Failure in Pregnancy

TAU research has diagnostic and therapeutic implications.

Sustainable "Plastics" Are on the Horizon

New sustainable biopolymer technology developed by TAU researchers may one day free the world of its worst pollutant.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University