Register for updates

 
 

Computers & Technology
RSS Feed
"Robat" Uses Sound to Navigate and Map Unique Environments
Thursday, September 06, 2018 2:01:00 PM

New robot mimics bats' ability to employ sonar to navigate its surroundings, TAU researchers say

The "Robat" is a fully autonomous terrestrial robot with bat-like qualities that uses echolocation to move through novel environments while mapping them based only on sound. It was developed at Tel Aviv University.

Bats use echolocation to map novel environments, navigating them by emitting sound then extracting information from the echoes reflected by objects in their surroundings. Many theories have been proposed to explain how bats harness sonar in order to navigate, but few attempts have been made to build a robot that mimics a bat's abilities.

A TAU study about the invention was published today in PLOS Computational Biology.

TAU graduate student Itamar Eliakim developed a robot that uses a biological bat-like approach, emitting sound and analyzing the returning echoes to generate a map of space. Prof. Yossi Yovel of TAU's Department of Zoology and Dr. Gabor Kosa of TAU's School of Mechanical Engineering serve as Mr. Eliakim's advisors.

“Our Robat is the first fully autonomous, bat-like biorobot that moves through a novel environment while mapping it solely based on echo information. This information delineates the borders of objects and the free paths between them," says Eliakim. "We've been able to demonstrate the great potential of using sound in future robotic applications."

The Robat is equipped with an ultrasonic speaker that produces frequency-modulated chirps at a rate typically used by bats, as well as two ultrasonic microphones that serve as the robot's ears. It classifies the borders and shapes of the objects it encounters with an artificial neural network, creating a rich, accurate map of its environment while avoiding obstacles. For example, when reaching a dead end, the robot uses its classification abilities to determine whether it is blocked by a wall or by a plant through which it could pass.

Funding for the research was provided partially by the Israel Ministry of Science, Technology and Space.

See the Robat in action in this YouTube video: https://www.youtube.com/watch?v=LzGGuzvYSH8.

Photo: The Robat is a fully-autonomous bat-like terrestrial robot that uses echolocation to navigate its environment. Credit: Itamar Eliakim.




Latest News

TAU Partners with Columbia University to Launch Dual Degree Program

Israeli university's first-ever joint undergraduate program with an Ivy League university offers students a world-class liberal arts education on two continents.

TAU’s Prof. Ilan Tsarfaty Awarded Breast Cancer Research Foundation Grant

BCRF granted $66 million in funding to 275 scientists at institutions worldwide in 2019.

TAU's Prof. Carmit Levy Receives Young Investigator Award at Society for Melanoma Research Summit

Researcher honored for major contributions to the field of melanoma research.

Your Zip Software Can Calculate the Complex Physical Quantity Called Entropy

A standard compression algorithm could revolutionize physical and biological computations, TAU researchers say.

Eating in Sync With Biological Clock Could Replace Problematic Diabetes Treatment

An early-morning, carb-filled meal improves glycemic control among diabetics, TAU researchers say.

New Treatment Triggers Self-Destruction of Pancreatic Cancer Cells

Research conducted on human pancreatic tumors transplanted in mice reveals promising results, TAU researchers say.

Autism-Related Genetic Mutations Occur in Aging Brains of Alzheimer's Patients

Significant overlap found between Alzheimer's-related mutations and those producing autism and related intellectual disabilities, TAU researchers say.

TAU Researcher Directs Israeli Participation in "Hope Barometer" for the First Time

International project sponsored by Swiss Society for Future Studies.

First AI Week Kicks Off at TAU

Weeklong conference features workshops, seminars and a hackathon addressing the industry's hottest topics.

New Pulsed Electric Field Technology Could Allow for Less Invasive Tumor Molecular Profiling

Electroporation bears less of the negative consequences of biopsies, say TAU, IDC, Technion researchers.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University