Register for updates

 
 

Computers & Technology
RSS Feed
"Robat" Uses Sound to Navigate and Map Unique Environments
Thursday, September 06, 2018 2:01:00 PM

New robot mimics bats' ability to employ sonar to navigate its surroundings, TAU researchers say

The "Robat" is a fully autonomous terrestrial robot with bat-like qualities that uses echolocation to move through novel environments while mapping them based only on sound. It was developed at Tel Aviv University.

Bats use echolocation to map novel environments, navigating them by emitting sound then extracting information from the echoes reflected by objects in their surroundings. Many theories have been proposed to explain how bats harness sonar in order to navigate, but few attempts have been made to build a robot that mimics a bat's abilities.

A TAU study about the invention was published today in PLOS Computational Biology.

TAU graduate student Itamar Eliakim developed a robot that uses a biological bat-like approach, emitting sound and analyzing the returning echoes to generate a map of space. Prof. Yossi Yovel of TAU's Department of Zoology and Dr. Gabor Kosa of TAU's School of Mechanical Engineering serve as Mr. Eliakim's advisors.

“Our Robat is the first fully autonomous, bat-like biorobot that moves through a novel environment while mapping it solely based on echo information. This information delineates the borders of objects and the free paths between them," says Eliakim. "We've been able to demonstrate the great potential of using sound in future robotic applications."

The Robat is equipped with an ultrasonic speaker that produces frequency-modulated chirps at a rate typically used by bats, as well as two ultrasonic microphones that serve as the robot's ears. It classifies the borders and shapes of the objects it encounters with an artificial neural network, creating a rich, accurate map of its environment while avoiding obstacles. For example, when reaching a dead end, the robot uses its classification abilities to determine whether it is blocked by a wall or by a plant through which it could pass.

Funding for the research was provided partially by the Israel Ministry of Science, Technology and Space.

See the Robat in action in this YouTube video: https://www.youtube.com/watch?v=LzGGuzvYSH8.

Photo: The Robat is a fully-autonomous bat-like terrestrial robot that uses echolocation to navigate its environment. Credit: Itamar Eliakim.




Latest News

Drug Candidate May Recover Vocal Abilities Lost to ADNP Syndrome

Protein snippet normalizes disrupted neural connectivity caused by genetic disorder, TAU researchers say.

TAU and Northwestern University Launch Joint Nanoscience Program

Collaboration to include student exchange program, post-doctoral scholarships and research grants.

Scientists Use Patients' Own Cells and Materials to Engineer Fully Personalized Tissue Implants of Any Kind

Risk of an immune response to an organ implant virtually disappears, TAU researchers say.

Center for the Study of the United States in Partnership with the Fulbright Program Established at TAU

New center designed to enhance the quality of scholarship in Israel about the U.S.

Neonatal Birthweights Increase in Direct Proportion to Number of Births

Large for gestational age (LGA) weight infants signal risk of recurrence, TAU researchers say.

New Platform Based on Biology and Nanotechnology Carries mRNA Directly to Target Cells

Combined platform provides safe, effective passage for therapies treating cancer and other diseases, TAU researchers say.

Scientists Discover Biological Ultraviolet Protection "Timer"

Wave-like process recruits skin protection systems to shield skin from sun exposure, TAU and Technion researchers say.

Where Deep Learning Meets Metamaterials

TAU researchers devise new approach to streamlining design of nanoscale building blocks with endless applications.

Environmental Factors May Trigger Onset of Multiple Sclerosis

Structural changes to protective neural membranes may be involved in onset of neurodegenerative disease, TAU researchers say.

"Robat" Uses Sound to Navigate and Map Unique Environments

New robot mimics bats' ability to employ sonar to navigate its surroundings, TAU researchers say.

contentSecondary
c

© 2018 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University