Register for updates

 
 

Computers & Technology
RSS Feed
Low-Bandwidth Radar Technology Provides Improved Detection of Objects
Tuesday, April 02, 2019 9:00:00 AM

New TAU research breaks with long-held principles used in developing radar technologies

Radar technologies were originally designed to identify and track airborne military targets. Today they're more often used to detect motor vehicles, weather formations and geological terrain.

Until now, scientists have believed that radar accuracy and resolution are related to the range of frequencies or radio bandwidth used by the devices. But a new Tel Aviv University study finds that an approach inspired by optical coherence tomography (OCT) requires little to no bandwidth to accurately create a high-resolution map of a radar's surrounding environment.

"We've demonstrated a different type of ranging system that possesses superior range resolution and is almost completely free of bandwidth limitations," says Prof. Pavel Ginzburg of TAU's School of Electrical Engineering, one of the principal authors of the study. "The new technology has numerous applications, especially with respect to the automotive industry. It's worth noting that existing facilities support our new approach, which means that it can be launched almost immediately."

The new research was led and conducted jointly by Prof. Ginzburg, Vitali Kozlov, Rony Komissarov and Dmitry Filonov, all of TAU's School of Electrical Engineering. It was published on March 29 in Nature Communications.

It was commonly believed that radar resolution was proportional to the bandwidth used — the broader the range of frequencies, the more accurate the detection of objects. But the TAU researchers have now demonstrated that low-bandwidth radars can achieve similar performance at a lower cost and without broadband signals by exploiting the coherence property of electromagnetic waves.

Two wave sources are perfectly coherent if they have a constant phase difference, the same frequency and the same waveform. The new "partially coherent" radar is as effective at resolving targets when compared with standard "coherent" radars in experimental situations.

"Our concept offers solutions in situations that require high-range resolution and accuracy but in which the available bandwidth is limited, such as the self-driving car industry, optical imaging and astronomy," Kozlov explains. "Not many cars on the road today use radars, so there's almost no competition for allocated frequencies. But what will happen in the future, when every car will be equipped with a radar and every radar will demand the entire bandwidth?

"We'll find ourselves in a sort of radio traffic jam. Our solutions permit drivers to share the available bandwidth without any conflict," Kozlov says.

"Our demonstration is just the first step in a series of new approaches to radiofrequency detectors that explore the impact of low-bandwidth radars on traditional fields," Prof. Ginzburg concludes. "We intend to apply this technology to previously unexplored areas, like rescue operations — sensing if an individual is buried in a collapsed building — or street mapping — sensing if a child is about to cross the street behind a bus that conceals him."

Research for the study was supported by an ERC grant and Kamin, and it was conducted at TAU's Radio Physics Laboratory's anechoic chamber.

Image caption: Partially coherent radar operation schematics. Courtesy of Nature Communications.




Latest News

TAU Partners with Columbia University to Launch Dual Degree Program

Israeli university's first-ever joint undergraduate program with an Ivy League university offers students a world-class liberal arts education on two continents.

TAU’s Prof. Ilan Tsarfaty Awarded Breast Cancer Research Foundation Grant

BCRF granted $66 million in funding to 275 scientists at institutions worldwide in 2019.

TAU's Prof. Carmit Levy Receives Young Investigator Award at Society for Melanoma Research Summit

Researcher honored for major contributions to the field of melanoma research.

Your Zip Software Can Calculate the Complex Physical Quantity Called Entropy

A standard compression algorithm could revolutionize physical and biological computations, TAU researchers say.

Eating in Sync With Biological Clock Could Replace Problematic Diabetes Treatment

An early-morning, carb-filled meal improves glycemic control among diabetics, TAU researchers say.

New Treatment Triggers Self-Destruction of Pancreatic Cancer Cells

Research conducted on human pancreatic tumors transplanted in mice reveals promising results, TAU researchers say.

Autism-Related Genetic Mutations Occur in Aging Brains of Alzheimer's Patients

Significant overlap found between Alzheimer's-related mutations and those producing autism and related intellectual disabilities, TAU researchers say.

TAU Researcher Directs Israeli Participation in "Hope Barometer" for the First Time

International project sponsored by Swiss Society for Future Studies.

First AI Week Kicks Off at TAU

Weeklong conference features workshops, seminars and a hackathon addressing the industry's hottest topics.

New Pulsed Electric Field Technology Could Allow for Less Invasive Tumor Molecular Profiling

Electroporation bears less of the negative consequences of biopsies, say TAU, IDC, Technion researchers.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University