Register for updates

 
 

Environment & Ecology
RSS Feed
Solving the Riddle of the Snow Globe
Thursday, May 25, 2017 9:30:00 AM

TAU research explains the process of sedimentation in natural and industrial contexts

If you've shaken a snow globe, you've enjoyed watching its tiny particles slowly sink to the bottom. But do all small objects drift the same way and at the same pace?

A new Tel Aviv University study finds the sedimentation of asymmetric objects in liquid is very different from that of symmetrical objects like spheres. The research solves a long-standing puzzle concerning the cause and the extent of "storminess" in sedimentation, and may be useful in improving water treatment and industrial processes that rely on suspensions, which are liquids that contain small solid particles. The research may also have use in the study of geological deposits, because variations in the concentration of particles from place to place affect the progress of sedimentation.

The research was led by Prof. Haim Diamant of TAU's School of Chemistry in collaboration with Prof. Thomas Witten of the University of Chicago, and conducted by TAU doctoral student Tomer Goldfriend. It was sponsored by the US-Israel Binational Science Foundation (BSF) and published in Physical Review Letters.

The calm and the storm

"Our research clarifies a common, complex phenomenon and offers ways of controlling it," Prof. Diamant said. "We have demonstrated that the 'storminess' of sedimentation is specific to symmetrical objects such as spheres and ellipsoids. It disappears in the more general case of asymmetric objects, which can have arbitrary shapes. Asymmetric objects render the sedimentation process more uniform and less chaotic."

Certain chemical reactors and water-treatment facilities rely on processes closely related to sedimentation, Prof. Diamant explained. "These are called 'fluidized beds,' where settling particles are made to hover in the liquid by an opposing upward flow of liquid, which facilitates their chemical activity. Fluidized beds are used in the production of polymers such as rubber and polyethylene. They are also used to improve the efficiency of water and waste treatment facilities. Our work might lead to improvements of such processes by controlling the uniformity of particles distributed in the liquid."

The team is currently studying the organizational properties of other kinds of materials. "We now intend to look for physical scenarios other than sedimentation that may show a similar kind of 'self-taming' — that is, a tendency of the material's constituents to self-organize into extremely uniform configurations," Prof. Diamant said. "The basic question is whether the behavior that we have found is unique to the process of sedimentation or can be found in a much broader class of materials. We think — we hope — that the latter is true."




Latest News

Marine Vessels are Unsuspecting Hosts of Invasive Species

Half of the ships passing along the Mediterranean coast of Israel carry damaging ascidians, TAU researchers say.

Inauguration of Steinhardt Museum of Natural History Celebrated at TAU on June 26

Historic event held in presence of philanthropist Michael Steinhardt and family, TAU governors, board members and faculty.

Baxter, Ramot at TAU and Tel Aviv Sourasky Medical Center Partner to Bring New Surgical Innovations Worldwide

Agreements will explore potential applications of promising early-stage research in areas of unmet need.

3,000-Year-Old Textiles Are Earliest Evidence of Chemical Dyeing in The Levant

Discovery provides insight into society and copper production in the Timna region at the time of David and Solomon, TAU researchers say.

Zuckerman Scholar Launches State-of-the-Art Laser Laboratory at TAU

Dr. Ishay Pomerantz hopes to lower the cost and size of particle accelerators for more practical social applications.

The Brain Mechanism Behind Multitasking

The brief reactivation of a learned memory can block interference from competing tasks, TAU researchers say.

DNA Delivery Technology Joins Battle Against Drug-Resistant Bacteria

New tool is major milestone against lethal condition, TAU researchers say.

Cardiac Stem Cells from Heart Disease Patients May Be Harmful

TAU researchers discover molecular pathway involved in toxic interaction between host cells and immune system.

Multispectral Imaging Reveals Ancient Hebrew Inscription Undetected for Over 50 Years

Military correspondence from the First Temple period discovered on reverse side of well-studied artifact at The Israel Museum, TAU researchers say.

Earliest Human Impact on the Environment Took Place 11,500 Years Ago

The earliest geological indication of humans' impact on the environment discovered in the Dead Sea, TAU researchers say.

IDEAS Immersion Program to Host Nine Female Entrepreneurs from TAU

Acceleration program partners with Cross Campus and Google to help budding women entrepreneurs incubate startups.

Prof. Jacob A. Frenkel Elected to Second Term as Chairman of TAU's Board of Governors

Internationally-acclaimed economist will continue to "greatly contribute to the further development of Tel Aviv University," said TAU President Prof. Yossi Klafter.

Solving the Riddle of the Snow Globe

TAU research explains the process of sedimentation in natural and industrial contexts.

contentSecondary
c

© 2017 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University