Register for updates

 
 

Psychology & Psychiatry
RSS Feed
New Virtual Reality Technology May Improve Motor Skills in Damaged Limbs
Wednesday, December 14, 2016 9:00:00 AM

Novel training may rehabilitate impaired limbs by allowing healthy limbs to lead "by example," say TAU researchers

A combination of traditional physical therapy and technology may improve the motor skills and mobility of an impaired hand by having its partner, more mobile hand lead by example through virtual reality training, new Tel Aviv University research suggests.

"Patients suffering from hemiparesis — the weakness or paralysis of one of two paired limbs — undergo physical therapy, but this therapy is challenging, exhausting, and usually has a fairly limited effect," said lead investigator Prof. Roy Mukamel of TAU's School of Psychological Sciences and Sagol School of Neuroscience, who conducted the research with his student Ori Ossmy. "Our results suggest that training with a healthy hand through a virtual reality intervention provides a promising way to repair mobility and motor skills in an impaired limb." The research was published in Cell Reports.

Does the left hand know what the right hand is doing?

53 healthy participants completed baseline tests to assess the motor skills of their hands, then strapped on virtual reality headsets that showed simulated versions of their hands. The virtual reality technology, however, presented the participants with a "mirror image" of their hands — when they moved their real right hand, their virtual left hand would move.

In the first experiment, participants completed a series of finger movements with their right hands, while the screen showed their "virtual" left hands moving instead. In the next, participants placed motorized gloves on their left hands, which moved their fingers to match the motions of their right hands. Again, the headsets presented the virtual left hands moving instead of their right hands.

The research team found that when subjects practiced finger movements with their right hands while watching their left hands on 3D virtual reality headsets, they could use their left hands more efficiently after the exercise. But the most notable improvements occurred when the virtual reality screen showed the left hand moving while in reality the motorized glove moved the hand.

Tricking the brain

"We effectively tricked the brain," said Prof. Mukamel.

"Technologically, these experiments were a big challenge," Prof. Mukamel continued. "We manipulated what people saw and combined it with the passive, mechanical movement of the hand to show that our left hand can learn even when it is not moving under voluntary control."

The researchers are optimistic that this research could be applied to patients in physical therapy programs who have lost the strength or control of one hand. "We need to show a way to obtain high-performance gains relative to other, more traditional types of therapies," said Prof. Mukamel. "If we can train one hand without voluntarily moving it and still show significant improvements in the motor skills of that hand, we've achieved the ideal."

The researchers are currently examining the applicability of their novel VR training scheme to stroke patients.




Latest News

Anti-Inflammatory, Anti-Stress Drugs Taken Prior to Surgery May Reduce Metastatic Recurrence

The body's stress inflammatory response is an active agent of cancer metastasis, TAU researchers say.

Cultural Activities May Influence the Way We Think

A new learning model may explain how culture helped shape human cognition and memory, TAU researcher says.

Marine Vessels are Unsuspecting Hosts of Invasive Species

Half of the ships passing along the Mediterranean coast of Israel carry damaging ascidians, TAU researchers say.

Inauguration of Steinhardt Museum of Natural History Celebrated at TAU on June 26

Historic event held in presence of philanthropist Michael Steinhardt and family, TAU governors, board members and faculty.

Baxter, Ramot at TAU and Tel Aviv Sourasky Medical Center Partner to Bring New Surgical Innovations Worldwide

Agreements will explore potential applications of promising early-stage research in areas of unmet need.

3,000-Year-Old Textiles Are Earliest Evidence of Chemical Dyeing in The Levant

Discovery provides insight into society and copper production in the Timna region at the time of David and Solomon, TAU researchers say.

Zuckerman Scholar Launches State-of-the-Art Laser Laboratory at TAU

Dr. Ishay Pomerantz hopes to lower the cost and size of particle accelerators for more practical social applications.

The Brain Mechanism Behind Multitasking

The brief reactivation of a learned memory can block interference from competing tasks, TAU researchers say.

DNA Delivery Technology Joins Battle Against Drug-Resistant Bacteria

New tool is major milestone against lethal condition, TAU researchers say.

Cardiac Stem Cells from Heart Disease Patients May Be Harmful

TAU researchers discover molecular pathway involved in toxic interaction between host cells and immune system.

Multispectral Imaging Reveals Ancient Hebrew Inscription Undetected for Over 50 Years

Military correspondence from the First Temple period discovered on reverse side of well-studied artifact at The Israel Museum, TAU researchers say.

Earliest Human Impact on the Environment Took Place 11,500 Years Ago

The earliest geological indication of humans' impact on the environment discovered in the Dead Sea, TAU researchers say.

IDEAS Immersion Program to Host Nine Female Entrepreneurs from TAU

Acceleration program partners with Cross Campus and Google to help budding women entrepreneurs incubate startups.

contentSecondary
c

© 2017 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University