Register for updates

 
 

Medicine & Health
RSS Feed
A Glow Stick That Detects Cancer?
Monday, May 01, 2017 11:40:00 AM

TAU researchers devise a novel probe to identify and measure microscopic cell activity


An image generated by the "glow stick" probe of cancerous cells.

Chemiluminescence, or chemical light, is the principle behind the glow sticks (also known as light sticks) used at rock concerts and as quick tools to grab when the electricity goes out. But they can also be used to diagnose diseases by identifying concentrations of biological samples. A new mechanism developed by Tel Aviv University researchers produces a 3,000-times-brighter, water-resistant chemiluminescent probe with particular application to medical and cancer diagnosis.

The research found that tweaking the electronic structure of current probes improves their inherent fluorescence. This could lead to the invention of a new single-component system with multiple applications — including the detection and measurement of cellular activity that points to certain pathologies, such as cancer. The study was recently published in ACS Central Science.


Chemical structure of the "glow stick" probe.

"Chemiluminescence is considered one of the most sensitive methods used in diagnostic testing," said Prof. Doron Shabat of TAU's School of Chemistry, who led the research. "We have developed a method to prepare highly efficient compounds that emit light upon contact with a specific protein or chemical. These compounds can be used as molecular probes to detect cancerous cells, among other applications."

Fixing a glitch

The research, conducted in collaboration with Dr. Christoph Bauer of Geneva University, repairs an energy-loss "glitch" in current chemiluminescent probes. Most systems use a mixture of one emitter molecule that detects the species of interest, and another two additional ingredients — a fluorophore and a soap-like substance called a surfactant — that amplify the signal to detectable levels. But energy is lost in the transfer process from the emitter molecule to the fluorophore, and surfactants are not biocompatible.


Light emission produced by the "glow stick" probe visible to the naked eye.

"As synthetic chemists, we knew how to link structure and function," said Prof. Shabat. "By adding two key atoms, we created a much brighter probe than those currently on the market. In addition, this particular molecule is suitable for direct use in cells."

Based on this molecule, the researchers developed sensors to detect several biologically relevant chemicals. They also used the chemiluminescent molecule to measure the activity of several enzymes and to image cells by microscopy.

"This gives us a new powerful methodology with which we can prepare highly efficient chemiluminescence sensors for the detection, imaging and analysis of various cell activities," said Prof. Shabat. The researchers are currently exploring ways of amplifying the chemiluminescence of the new probes for in vivo imaging.

The research was funded in part by the Israel Science Foundation, the Binational Science Foundation, the German Israeli Foundation, and the Israeli National Nanotechnology Initiative.

Graphics: Courtesy of Prof. Doron Shabat

 




Latest News

TAU Scientists Make Paralyzed Rats Walk Again

Using stem cell-based biomedical engineering to rehabilitate a severed spinal cord, TAU and Technion scientists restore control of their legs.

Byzantine Mosaic Unearthed at Ashdod-Yam in Israel

Greek inscription is earliest known use of the Georgian calendar, TAU researchers say.

Hyperbaric Oxygen Therapy May Alleviate Symptoms of Alzheimer's Disease

Treatment has potential to correct behavioral and physical deficits associated with the disease, TAU researchers say.

Skipping Breakfast Disrupts "Clock Genes" that Regulate Body Weight and Glucose

Consuming breakfast normalizes the expression of genes that improve insulin and glucose responses all day long, TAU researchers say.

Dual Virtual Reality/Treadmill Exercises Promote Brain Plasticity in Parkinson's Patients

Therapy effective even in later stages of the disease, TAU researchers say.

AFTAU to Celebrate the Steve Tisch School of Film & Television at Annual Gala Dinner

Philanthropist and producer Steve Tisch to be honored; prominent industry leaders to serve as vice chairs.

Children's Exposure to Secondhand Smoke May Be Vastly Underestimated by Parents

Smoking parents misperceive where and when their kids are exposed to cigarette smoke, TAU researchers say.

Your Stress and Mine

TAU study assesses how we perceive other people's stress levels in the workplace.

Consumption of Nicotine in Adolescence May Lead to Increased Alcohol Intake Later in Life

Nicotine "memories" from adolescence may lead to alcoholism years later, TAU researchers say.

When You're Tired, Your Brain Cells Actually Slow Down

Sleep rhythms can disrupt normal activity in specific regions of the brain, say TAU, UCLA and UW researchers.

contentSecondary
c

© 2017 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University