Register for updates

 
 

Medicine & Health
RSS Feed
Researchers Devise a Fast and Effective Mechanism to Combat One of the Most Aggressive Cancers
Monday, February 24, 2014 1:32:00 PM

TAU targets drug-resistant ovarian tumors with nanotechnology

Ovarian cancer accounts for more deaths of American women than any other cancer of the female reproductive system. According to the American Cancer Society, one in 72 American women will be diagnosed with ovarian cancer, and one in 100 will ultimately die of the condition.

Now Prof. Dan Peer of Tel Aviv University's Department of Cell Research and Immunology has proposed a new strategy to tackle an aggressive subtype of ovarian cancer using a new nanoscale drug-delivery system designed to target specific cancer cells. He and his team — Keren Cohen and Rafi Emmanuel from Peer's Laboratory of Nanomedicine and Einat Kisin-Finfer and Doron Shabbat, from TAU's Department of Chemistry — have devised a cluster of nanoparticles called gagomers, made of fats and coated with a kind of polysugar. When filled with chemotherapy drugs, these clusters accumulate in tumors, producing dramatically therapeutic benefits.

The objective of Peer's research is two-fold: to provide a specific target for anti-cancer drugs to increase their therapeutic benefits, and to reduce the toxic side effects of anti-cancer therapies. The study was published in February in the journal ACS Nano.

Why chemotherapy fails

According to Prof. Peer, traditional courses of chemotherapy are not an effective line of attack. Chemotherapy's failing lies in the inability of the medicine to be absorbed and maintained within the tumor cell long enough to destroy it. In most cases, the chemotherapy drug is almost immediately ejected by the cancer cell, severely damaging the healthy organs that surround it, leaving the tumor cell intact.

But with their new therapy, Peer and his colleagues saw a 25-fold increase in tumor-accumulated medication and a dramatic dip in toxic accumulation in healthy organs. Tested on laboratory mice, the gagomer mechanism effects a change in drug-resistant tumor cells. Receptors on tumor cells recognize the sugar that encases the gagomer, allowing the binding gagomer to slowly release tiny particles of chemotherapy into the cancerous cell. As more and more drugs accumulate within the tumor cell, the cancer cells begin to die off within 24-48 hours.

"Tumors become resistant very quickly. Following the first, second, and third courses of chemotherapy, the tumors start pumping drugs out of the cells as a survival mechanism," said Prof. Peer. "Most patients with tumor cells beyond the ovaries relapse and ultimately die due to the development of drug resistance. We wanted to create a safe drug-delivery system, which wouldn't harm the body's immune system or organs."

A personal perspective

Prof. Peer chose to tackle ovarian cancer in his research because his mother-in-law passed away at the age of 54 from the disease. "She received all the courses of chemotherapy and survived only a year and a half," he said. "She died from the drug-resistant aggressive tumors.

"At the end of the day, you want to do something natural, simple, and smart. We are committed to try to combine both laboratory and therapeutic arms to create a less toxic, focused drug that combats aggressive drug-resistant cancerous cells," said Prof. Peer. "We hope the concept will be harnessed in the next few years in clinical trials on aggressive tumors," said Prof. Peer.





Latest News

Siblings of Children With Intellectual Disabilities Score High on Empathy, Teaching and Closeness

TAU research indicates positive relationship between children and their siblings with intellectual disabilities.

Fibroblasts Involved in Healing Spur Tumor Growth in Cancer

Vital to healing wounds, fibroblasts have a "misguided" response to cancer cells, according to TAU researchers.

TAU Study Finds Widespread Misinterpretation of Gene Expression Data

But bias can be removed from data to filter out false results, researchers say.

Made a "Dumb" Move? New Studies Say a Neuronal Mechanism Is to Blame

TAU, Hebrew University research finds a neuronal mechanism explains much of our irrational behavior.

Tiny Insects Become "Visible" to Bats When They Swarm

3-D simulations could provide new insights into the evolution of bat echolocation, TAU researchers say.

AFTAU Earns 4-Star Rating from Charity Navigator for Seventh Consecutive Year

Charity Navigator's highest rating indicates the nonprofit exceeds industry standards and outperforms other organizations.

TAU Partners with Columbia University to Launch Dual Degree Program

Israeli university's first-ever joint undergraduate program with an Ivy League university offers students a world-class liberal arts education on two continents.

TAU’s Prof. Ilan Tsarfaty Awarded Breast Cancer Research Foundation Grant

BCRF granted $66 million in funding to 275 scientists at institutions worldwide in 2019.

TAU's Prof. Carmit Levy Receives Young Investigator Award at Society for Melanoma Research Summit

Researcher honored for major contributions to the field of melanoma research.

Your Zip Software Can Calculate the Complex Physical Quantity Called Entropy

A standard compression algorithm could revolutionize physical and biological computations, TAU researchers say.

contentSecondary
c

© 2020 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University