Register for updates

 
 

Medicine & Health
RSS Feed
Programming DNA to Reverse Antibiotic Resistance in Bacteria
Thursday, June 04, 2015 1:57:00 PM

TAU researcher's novel strategy may sensitize bacteria to antibiotics to selectively kill antibiotic-resistant bacteria

At its annual assembly in Geneva last week, the World Health Organization approved a radical and far-reaching plan to slow the rapid, extensive spread of antibiotic resistance around the world. The plan hopes to curb the rise caused by an unchecked use of antibiotics and lack of new antibiotics on the market.

New Tel Aviv University research published in PNAS introduces a promising new tool: a two-pronged system to combat this dangerous situation. It nukes antibiotic resistance in selected bacteria, and renders other bacteria more sensitive to antibiotics. The research, led by Prof. Udi Qimron of the Department of Clinical Microbiology and Immunology at TAU's Sackler Faculty of Medicine, is based on bacterial viruses called phages, which transfer "edited" DNA into resistant bacteria to kill off resistant strains and make others more sensitive to antibiotics.

According to the researchers, the system, if ultimately applied to pathogens on hospital surfaces or medical personnel's hands, could turn the tide on untreatable, often lethal bacterial infections. "Since there are only a few pathogens in hospitals that cause most of the antibiotic-resistance infections, we wish to specifically design appropriate sensitization treatments for each one of them," Prof. Qimron says. "We will have to choose suitable combinations of DNA-delivering phages that would deliver the DNA into pathogens, and the suitable combination of 'killing' phages that could select the re-sensitized pathogens."

Reprogramming the system

"Antibiotic-resistant pathogens constitute an increasing threat because antibiotics are designed to select resistant pathogens over sensitive ones," Prof. Qimron says. "The injected DNA does two things: It eliminates the genes that cause resistance to antibiotics, and it confers protection against lethal phages.

"We managed to devise a way to restore antibiotic sensitivity to drug-resistant bacteria, and also prevent the transfer of genes that create that resistance among bacteria," he continues.

Earlier research by Prof. Qimron revealed that bacteria could be sensitized to certain antibiotics — and that specific chemical agents could "choose" those bacteria more susceptible to antibiotics. His strategy harnesses the CRISPR-Cas system — a bacterial DNA-reprogramming system Prof. Qimron pioneered — as a tool to expand on established principles.

According to the researchers, "selective pressure" exerted by antibiotics renders most bacteria resistant to them — hence the epidemic of lethal resistant infections in hospitals. No counter-selection pressure for sensitization of antibiotics is currently available. Prof. Qimron's strategy actually combats this pressure — selecting for the population of pathogens exhibiting antibiotic sensitivity.

"We believe that this strategy, in addition to disinfection, could significantly render infections once again treatable by antibiotics," said Prof. Qimron.

Prof. Qimron and his team are now poised to apply the CRISPR/phage system on pseudomonas aeruginosa — one of the world's most prevalent antibiotic-resistant pathogens involved in hospital-acquired infections — and to test whether bacterial sensitization works in a more complex microbial environment: the mouse cage.




Latest News

TAU Partners with Columbia University to Launch Dual Degree Program

Israeli university's first-ever joint undergraduate program with an Ivy League university offers students a world-class liberal arts education on two continents.

TAU’s Prof. Ilan Tsarfaty Awarded Breast Cancer Research Foundation Grant

BCRF granted $66 million in funding to 275 scientists at institutions worldwide in 2019.

TAU's Prof. Carmit Levy Receives Young Investigator Award at Society for Melanoma Research Summit

Researcher honored for major contributions to the field of melanoma research.

Your Zip Software Can Calculate the Complex Physical Quantity Called Entropy

A standard compression algorithm could revolutionize physical and biological computations, TAU researchers say.

Eating in Sync With Biological Clock Could Replace Problematic Diabetes Treatment

An early-morning, carb-filled meal improves glycemic control among diabetics, TAU researchers say.

New Treatment Triggers Self-Destruction of Pancreatic Cancer Cells

Research conducted on human pancreatic tumors transplanted in mice reveals promising results, TAU researchers say.

Autism-Related Genetic Mutations Occur in Aging Brains of Alzheimer's Patients

Significant overlap found between Alzheimer's-related mutations and those producing autism and related intellectual disabilities, TAU researchers say.

TAU Researcher Directs Israeli Participation in "Hope Barometer" for the First Time

International project sponsored by Swiss Society for Future Studies.

First AI Week Kicks Off at TAU

Weeklong conference features workshops, seminars and a hackathon addressing the industry's hottest topics.

New Pulsed Electric Field Technology Could Allow for Less Invasive Tumor Molecular Profiling

Electroporation bears less of the negative consequences of biopsies, say TAU, IDC, Technion researchers.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University