Register for updates

 
 

Medicine & Health
RSS Feed
Drug Candidate Stabilizes Essential Transport Mechanism in Nerve Cells
Tuesday, January 31, 2017 9:00:00 AM

NAP blocks formation of "tangles" that contribute to Alzheimer's disease, says TAU researcher

Tau is a key brain protein involved in Alzheimer's disease and other brain diseases. Aggregates of Tau known as "neurofibrillary tangles" have been associated with nerve cell death and cognitive decline.

An important new Tel Aviv University study published in Molecular Psychiatry pinpoints the mechanism harnessed by the drug candidate NAP to block the formation of these harmful neurofibrillary tangles. It facilitates the interaction of Tau with microtubules, the minitubes that serve as "train tracks" for essential movement of biological material in nerve cells.

"Abnormal Tau proteins form tangles that contribute to the progression of Alzheimer's disease," said Prof. Illana Gozes, who led the research for the study. "We showed here, for the first time, that the drug candidate NAP augmented microtubule movement in nerve cells. At the molecular level, NAP, a fragment of activity-dependent neuroprotective protein (ADNP), enhanced Tau-microtubule interactions that block the recruitment of Tau to the tangles observed in Alzheimer's disease and related disorders."

Prof. Gozes is the incumbent of the Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Head of the Elton Laboratory for Molecular Neuroendocrinology at TAU's Sackler Faculty of Medicine and a member of TAU's Adams Super Center for Brain Studies and the Sagol School of Neuroscience.

Stabilizing a neurobiological process

Prof. Gozes is responsible for discovering ADNP, a gene that is dysregulated in Alzheimer's. Mutations in ADNP that occur in pregnancy are a major cause of autism with intellectual disability.

"ADNP and NAP operate through the stabilization of microtubules — tubes within the cell that maintain cellular shape," Prof. Gozes said. "They transport biological material. These microtubules break down in in Alzheimer's disease and may be dysfunctional in autism. NAP works to protect the microtubules, thereby protecting the cell."

"We now discovered that ADNP dramatically enhances Tau binding to the microtubules, protecting them against destruction and against Tau pathology. We further discovered that this action of ADNP is through its NAP fragment, which is now intended for further clinical development."

"Knowing the precise mechanism of its action, it will be much easier to bring NAP to the clinic and to patients," said Prof. Gozes. "Furthermore, the precise mechanism defines a new drug target for autism spectrum disorders, Alzheimer's disease and many other neurodegenerative and neuropsychiatric diseases."

The research for the study was conducted by TAU graduate students Yanina Ivashko-Pachima and Dr. Anna Malishkevich, together with Dr. Laura C. Sayas of Centro de Investigaciones Biomédicas de Canarias. NAP (now called CP201), a Tel Aviv University technology under a term sheet agreement with Coronis Neurosciences, is now planned for future clinical trials in patients with autism, specifically those with ADNP-related syndrome.




Latest News

TAU Study Links Cannabis Use in Adolescence to Schizophrenia

Psychoactive compound in cannabis may trigger the brain disorder, researchers say.

Violent Attacks Against Jews Declined 12% in 2016, But Anti-Semitic Hate Speech Spiked

U.S. college campuses saw a 45% rise in anti-Semitism of all forms, annual TAU Kantor Center study reports.

Israeli Student Film Sets Guinness World Record

Lior Geller's Roads noted for most awards won by a short student film.

Tiny Whiteflies Provide Insight into Stabilizing Manmade Drones during Takeoff

The insects spread their wings only after leaping, rotating and reversing direction in midair, TAU researchers say.

Where the Jordan Stops Flowing

Regional cooperation key to river restoration strategy that could be emulated around the world, says TAU researcher.

Infant Vitamin B1 Deficiency Leads to Poor Motor Function and Balance

Lack of vitamin has long-term consequences for children's health, TAU researchers say.

Scientists Discover Mechanism That Causes Cancer Cells to Self-destruct

Modifying specific proteins during cancer cell division unleashes a natural killing mechanism, say TAU researchers.

Insulin Resistance May Lead to Faster Cognitive Decline

Executive function and memory are particularly vulnerable to the effects of insulin resistance, TAU researchers say.

Study Finds Disruptive Children Do Not Inspire Similar Behavior in Their Siblings

Siblings are more likely to learn how not to behave, say TAU researchers.

Sponge Bacterium Found to Encapsulate Arsenic Drawn from Environment

Entotheonella sequesters and neutralizes toxins within sponge host, say TAU researchers.

Outdoor Adventure Program Is a Promising Complementary Treatment for Autism Spectrum Disorder

Challenge-based intervention may be effective in reducing the severity of autism symptoms, TAU researchers say.

Ancient Jars Found in Judea Reveal Earth's Magnetic Field is Fluctuating, Not Diminishing

New evidence says geomagnetic force "spiked" in 8th century BCE, say TAU, Hebrew University, UC San Diego researchers.

The Zuckerman Post-Doctoral Scholarship Program at TAU Calls for Applications

Initiative designed to support future generations of leaders in STEM disciplines in the US and Israel.

Drug Candidate Stabilizes Essential Transport Mechanism in Nerve Cells

NAP blocks formation of "tangles" that contribute to Alzheimer's disease, says TAU researcher.

contentSecondary
c

© 2017 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University