Register for updates

 
 

Medicine & Health
RSS Feed
New Platform Based on Biology and Nanotechnology Carries mRNA Directly to Target Cells
Monday, October 29, 2018 9:00:00 AM

Combined platform provides safe, effective passage for therapies treating cancer and other diseases, TAU researchers say

Delivering an effective therapeutic payload to specific target cells with few adverse effects is considered by many to be the holy grail of medical research. A new Tel Aviv University study explores a biological approach to directing nanocarriers loaded with protein "game changers" to specific cells. The groundbreaking method may prove useful in treating myriad malignancies, inflammatory diseases and rare genetic disorders.

Prof. Dan Peer, director of the Laboratory of Precision Nanomedicine at the School of Molecular Cell Biology at TAU's Faculty of Life Sciences, led the research for the new study, which was conducted by TAU graduate student Nuphar Veiga and lab colleagues Meir Goldsmith, Yasmin Granot, Daniel Rosenblum, Niels Dammes, Ranit Kedmi and Srinivas Ramishetti. The research was published in Nature Communications.

Over the past few years, lipid carriers encapsulating messenger RNAs (mRNAs) have been shown to be extremely useful in altering the protein expressions for a host of diseases. But directing this information to specific cells has remained a major challenge.

"In our new research, we utilized mRNA-loaded carriers — nanovehicles carrying a set of genetic instructions via a biological platform called ASSET — to target the genetic instructions of an anti-inflammatory protein in immune cells," says Prof. Peer. "We were able to demonstrate that selective anti-inflammatory protein in the target cells resulted in reduced symptoms and disease severity in colitis.

"This research is revolutionary. It paves the way for the introduction of an mRNA that could encode any protein lacking in cells, with direct applications for genetic, inflammatory and autoimmune diseases — not to mention cancer, in which certain genes overexpress themselves."

ASSET (Anchored Secondary scFv Enabling Targeting) uses a biological approach to direct nanocarriers into specific cells to promote gene manipulation.

"This study opens new avenues in cell-specific delivery of mRNA molecules and ultimately might introduce the specific anti-inflammatory (interleukin 10) mRNA as a novel therapeutic modality for inflammatory bowel diseases," says Ms. Veiga.

"Targeted mRNA-based protein production has both therapeutic and research applications," she concludes. "Going forward, we intend to utilize targeted mRNA delivery for the investigation of novel therapeutics treating inflammation disorders, cancer and rare genetic diseases."

Photo captions:

Top right: Schematic illustration of the mechanism by which the lab's targeted nanoparticles modulate gene expression in the target cell. Credit: Nuphar Veiga.

Middle left: Peer lab team. Left to right: Yasmin Granot, Dr. Meir Goldsmith, Niels Dammes, Nuphar Veiga, Prof. Dan Peer, Dr. Srinivas Ramishetti and Daniel Rosenblum. Credit: Anna Gutkin.




Latest News

Lightning's Electromagnetic Fields May Have Protective Properties

Extremely low frequency fields may have played an evolutionary role in living organisms, say TAU researchers.

Study Links Adult Fibromyalgia to Childhood Sexual Abuse

Hyperbaric oxygen therapy sessions are an effective treatment, TAU researchers say.

Adolescents With Celiac Disease Are at Higher Risk of Eating Disorders

Overweight teenage girls with CD are at highest risk of developing early hallmarks of full-blown eating disorders, TAU researchers say.

White Blood Cells Related to Allergies and Asthma May Also Be Harnessed to Destroy Cancer Cells

Eosinophil immune cells are capable of killing colon cancer cells, TAU researchers say.

New Yeast Model of Metabolic Disorders May Lead to Life-saving Therapies

Unicellular organism mimics pathology and symptoms of congenital diseases, TAU researchers say.

TAU-Led International Team Discovers New Way Supermassive Black Holes Are "Fed"

These "giant monsters" were observed suddenly devouring gas in their surroundings.

New Biomarker Links Cancer Progression to Genome Instability

High level of specific protein in tumors indicates prognosis as well as optimal treatments, TAU researchers say.

Microplastics and Plastic Additives Discovered in Ascidians All Along Israel's Coastline

TAU report is first to assess presence of plastic additives in Eastern Mediterranean and Red Sea marine life.

Heart Cell Defect Identified as Possible Cause of Heart Failure in Pregnancy

TAU research has diagnostic and therapeutic implications.

Sustainable "Plastics" Are on the Horizon

New sustainable biopolymer technology developed by TAU researchers may one day free the world of its worst pollutant.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University