Register for updates

 
 

Medicine & Health
RSS Feed
White Blood Cells Related to Allergies and Asthma May Also Be Harnessed to Destroy Cancer Cells
Tuesday, January 22, 2019 9:40:00 AM

Eosinophil immune cells are capable of killing colon cancer cells, TAU researchers say

A new Tel Aviv University study finds that eosinophils — white blood cells that may have played an evolutionary role in combating parasites, but which are today responsible for chronic asthma and modern allergies — may be used to eliminate malignant colon cancer cells.

The research was led by Prof. Ariel Munitz of the Department of Microbiology and Clinical Immunology at TAU's Sackler School of Medicine and conducted by TAU doctoral student Hadar Reichman of Prof. Munitz's TAU laboratory, in collaboration with colleagues in Tel Aviv Medical Center's Gastroenterology Department. It was published in Cancer Immunology Research on January 21.

"Eosinophils are white blood cells that secrete powerfully destructive proteins," Prof. Munitz says. "They may have played an evolutionary role in combatting parasites. But now that most people, particularly in the West, enjoy good hygiene and few parasites, the eosinophils have become destructive agents, causing allergies and asthma.

"Our new research theorized that since eosinophils are capable of killing parasites and can cause damage in the lungs of asthma patients, they might play a role in cancer treatment and would be able to kill tumor cells."

The largest eosinophil reservoir is situated in the digestive system, so the researchers initially decided to test their theories on colon cancer. In the first stage of research, they selected samples from tumors of 275 patients to determine the number of eosinophils in a tumor as compared with the stage and severity of the disease.

"We found that the higher the number of eosinophils in the tumor, the less severe the disease, which represents a clear correlation," says Prof. Munitz. "We identified that the cancerous environment attracts these cells, which infiltrate the tumors and flourish there for a long time."

The researchers subsequently tested their hypotheses in various mouse models of colorectal cancer. They discovered that eosinophils displayed potent anti-tumor activities and could directly kill tumor cells.

"We also found that when eosinophils were activated by a protein called IFN-gamma, they induced an even greater tumor-killing response," says Prof. Munitz. "Following various extensive analyses, we concluded that eosinophils have unique and distinct activities in comparison with other cells present in the tumor. For example, eosinophils can kill tumors independently of known tumor-fighting cytotoxic T cells."

The fact that eosinophils represent a distinct weapon in fighting tumor cells opens new avenues for treatment of cancer, either by encouraging eosinophils to unleash their robust anti-tumor response, or by combining treatments to harness the potent forces of both eosinophils and cytotoxic T cells.

"We have discovered a new target for immunotherapy for cancer patients — the eosinophils," concludes Prof. Munitz. "We hope that our research will serve as a foundation for drug development in a number of different approaches."

The study was supported by the Israel Cancer Research Foundation, the Israel Cancer Association and the Israel Science Foundation.




Latest News

New Antibacterial Fillings from TAU May Combat Recurring Tooth Decay

Novel material may prevent one of the costliest and most prevalent bacterial diseases in the world.

First Proof-of-Concept Demonstrates Genetic Sex Selection in Mammals

Crossed transgenic mouse lines struck males without affecting females, TAU researchers say.

2019 Tel Aviv International Student Film Festival Looks to the Future

International students, filmmakers and glitterati flock to 21st edition of festival, held throughout the city of Tel Aviv.

TAU Scientist Prof. Judith Berman Is Elected Member of European Molecular Biology Organization

EMBO promotes excellence in the life sciences in Europe and beyond.

Fruit Bats Can Transform Echoes Into Images

Bats see and use their eyes as much as they hear and use echolocation, TAU researchers say.

TAU Ranks Among World's Top 20 Universities for Impact of Scientific Research

QS World University Rankings assess performance of over 1,000 universities in 82 locations worldwide.

8,000 Cyber Security Experts to Attend 9th Annual Cyber Week Conference at TAU

Weeklong event features world's top cyber security experts in government, military, industry and academia.

Study Shows How the Nervous System Can Transmit Information Across Multiple Generations

Mechanism identified in nematodes allows neurons to communicate with germ cells, TAU researchers say.

TAU Researchers Spearhead Early Detection of Parkinson's Disease

New method tracks early stages of protein aggregation involved in Parkinson's.

Inauguration of the Ady Seidman Lobby

Attractive large entrance hall honors the memory of one of the founding fathers of TAU's Engineering Faculty.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University