Register for updates

 
 

Medicine & Health
RSS Feed
Blocking Inflammatory Pathway Key to Preventing Brain Metastasis from Melanoma
Monday, August 19, 2019 9:46:00 AM

Tumor cells "hijack" their way to the brain through an inflammatory factor secreted by brain cells, say TAU researchers

Brain metastases are among the deadliest tumor metastases, with a median survival period of less than one year, and the incidence of brain metastasis is rising.

A new Tel Aviv University study finds that melanoma brain metastasis occurs when tumor cells "hijack" an inflammatory pathway in the brain. Blocking this pathway could prevent these metastases from developing, according to the research.

"The prognosis of patients with brain metastases is very grim," explains Prof. Neta Erez of the Department of Pathology at TAU's Sackler Faculty of Medicine, the lead author of the study. "Patients used to die from metastases in other places before brain metastases were clinically evident. Treatments have improved and patients are living longer, so the incidence of diagnosed brain metastases is increasing. Understanding how and why brain metastasis occurs is an urgent challenge facing cancer researchers today."

The research was published in Cell Reports on August 13. It was conducted by TAU graduate students Dr. Hila Doron and Malak Amer, in collaboration with Prof. Ronit Satchi-Fainaro, also of TAU's Sackler Faculty of Medicine.

The new research focuses on melanoma brain metastasis because "melanoma is the deadliest skin cancer due to its high rate of metastasis, frequently to the brain," says Prof. Erez.

The scientists utilized a mouse model of spontaneous melanoma brain metastasis to study the interactions of melanoma tumors within the brain microenvironment. They discovered that melanoma brain metastasis is facilitated by the takeover of a physiological inflammatory pathway by astrocytes, the brain cells that maintain a protected environment in the brain. In addition, astrocytes respond to tissue damage in the brain by instigating an inflammatory and tissue repair response to contain the damage, secreting inflammatory factors that recruit immune cells.

"We discovered that tumor cells recruit these inflammatory factors to hijack their way to the brain," says Prof. Erez. "We identified a specific factor that mediates their attraction to the brain and showed that brain metastasising melanoma cells express the receptor for the inflammatory factor, which is how they respond to this signal."

Significantly, when the researchers used genetic tools to inhibit the expression of the receptor on melanoma cells, they successfully blocked the ability of tumor cells to respond to astrocyte signalling — and the development of brain metastases was significantly inhibited.

After the initial research was performed in a pre-clinical mouse model, the scientists validated their results in the brain metastases of patients who had undergone brain surgery, finding that astrocytes express the same inflammatory factor (CXCL10) and that the tumor cells express the same receptor (CXCR3) as the mouse model. This suggests that the identical mechanism is operative in humans.

"Our findings suggest that blocking this signaling pathway may prevent brain metastasis," concludes Prof. Erez. "The CXCL10-CXCR3 axis may be a potential therapeutic target for prevention of melanoma brain metastasis."

The researchers are currently investigating the trigger that instigates inflammation in the brain, which promotes metastasis.




Latest News

Early Humans Used Tiny, Flint "Surgical" Tools to Butcher Elephants

New discovery by TAU-led research group suggests early humans in the Levant were sophisticated and environmentally conscious.

TAU Ranks Among Top 10 Undergraduate Programs Producing Most Venture Capital-Backed Entrepreneurs

Joining Stanford, UC Berkeley, and MIT, TAU is the only non-U.S. university to make top 10 of global VC list.

Protein Mapping Pinpoints Why Most Metastatic Melanoma Patients Do Not Respond to Immunotherapy

Lipid metabolism found to affect cancer cells' visibility to the immune system, say TAU, Sheba Medical Center researchers.

Breakdown in Coral Spawning Places Species at Risk of Extinction

Synchronized coral spawning has become erratic, endangering the long-term survival of coral species, TAU researchers say.

Joanna Naftali Named Associate Vice President, Midwest of AFTAU

Accomplished fundraiser has deep roots in educational, philanthropic, and arts sectors.

Blocking Inflammatory Pathway Key to Preventing Brain Metastasis from Melanoma

Tumor cells "hijack" their way to the brain through an inflammatory factor secreted by brain cells, say TAU researchers.

TAU and Technion Researchers Wrest Control of One of World's Most Secure PLCs

Rogue engineering station instigated "hostile intervention" of Siemens programmable logic controller that runs industrial processes.

Novel Immunotherapy May Prevent Brain Metastases

Injection of synthetic DNA material found to activate brain's immune cells and kill invading tumor cells, TAU researchers say.

TAU Scientists Develop Novel Nano-Vaccine for Melanoma

Injection of nanoparticle has proven effective in mouse models, researchers say.

Genetic Screen Identifies Genes That Protect Cells from Zika Virus

Genes found to safeguard against infection as well as resuscitate infected cells, TAU researchers say.

contentSecondary
c

© 2019 American Friends of Tel Aviv University
39 Broadway, Suite 1510 | New York, NY 10006 | 212.742.9070 | info@aftau.org
Privacy policy | Tel Aviv University